Math 611 Homework 2

Paul Hacking

September 28, 2015
(1) Let G be a group and $H \leq G$ a subgroup of G of index 2 . Prove that H is normal. Give an example to show that a subgroup of index 3 need not be normal.
(2) (a) Describe the partition of the symmetric group S_{4} into conjugacy classes.
(b) In class we explained (briefly) that the group G of rotational symmetries of the cube is isomorphic to S_{4}. (The isomorphism is obtained by considering the action of G on the set of pairs of opposite vertices of the cube.) Determine the geometric interpretation of the conjugacy classes in S_{4} under this isomorphism.
(3) (a) Determine the conjugacy classes in the alternating group A_{4}. Check your answer using the fact that the order of a conjugacy class divides the order of the group.
(b) Show that A_{4} does not have a subgroup of order 6 .
(4) Let G be a group and $a \in G$ an element. Determine the centralizer $Z(a)$ of a in G and the size of the conjugacy class $C(a)$ of a in G in the following cases.
(a) $(123) \in S_{5}$.
(b) $(123)(456) \in S_{7}$.
(c) $\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$.
(d) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$.
(5) A group G of order 21 contains a conjugacy class $C(x)$ of size 3 . What is the order of x in G ?
(6) Determine the conjugacy classes in the group

$$
G=\left\langle a, b \mid a^{3}=b^{4}=e, \quad b a=a^{-1} b\right\rangle .
$$

Here you may assume without proof that $|G|=12$ so that the elements of G can be expressed uniquely as $a^{i} b^{j}$ for $0 \leq i<3$ and $0 \leq j<4$.
[Note: This group was studied in HW1Q9.]
(7) (a) Consider the action of $\mathrm{PGL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ on $\mathbb{P}_{\mathbb{Z} / 3 \mathbb{Z}}^{1}=\mathbb{Z} / 3 \mathbb{Z} \cup\{\infty\}$ by Mobius transformations (See Q11(a) for more details.) Use this action to prove that $\mathrm{PGL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ is isomorphic to the symmetric group S_{4}.
(b) Show that the subgroup $\mathrm{PSL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ of $\mathrm{PGL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ is isomorphic to the alternating group A_{4}.
(8) Classify finite groups G with at most 3 conjugacy classes.
(9) For each of the following statements, give a proof or a counterexample.
(a) If $H \triangleleft G$ and $K \triangleleft H$ then $K \triangleleft G$.
(b) If $H \triangleleft G$ and $K \leq G$ then $H \cap K \triangleleft K$.
(10) Let G be a finite group and $H \triangleleft G$ a normal subgroup. Let $a \in H$ be an element. Let $C_{H}(a)$ denote the conjugacy class of a in H and $C_{G}(a)$ the conjugacy class of a in G. Let $Z_{H}(a)$ denote the centralizer of a in H and $Z_{G}(a)$ the centralizer of a in G. (Then $Z_{H}(a)=Z_{G}(a) \cap H$.) Let $q: G \rightarrow G / H$ be the quotient homomorphism.
(a) Show that $g C_{H}(a) g^{-1}=C_{H}\left(g a g^{-1}\right)$ for all $g \in G$.
(b) Show that $C_{G}(a)$ is a union of $\left[G / H: q\left(Z_{G}(a)\right)\right]$ distinct conjugacy classes in H of equal size (the orbit of the conjugacy class $C_{H}(a)$ under conjugation by elements of G).
(c) Now suppose $G=S_{n}$, the symmetric group on n objects ($n \geq 2$), and $H=A_{n}$, the alternating group. Deduce that if $Z_{S_{n}}(a)$ is not contained in A_{n} then $C_{S_{n}}(a)=C_{A_{n}}(a)$, while if $Z_{S_{n}}(a)$ is contained in A_{n} then $C_{S_{n}}(a)=C_{A_{n}}(a) \cup C_{A_{n}}((12) a(12))$ is a union of two
distinct conjugacy classes in A_{n}. Give examples showing that both cases occur.
(11) (This question is optional and will not be graded). Let F be a field and n a non-negative integer. Define an equivalence relation \sim on $F^{n+1} \backslash\{0\}$ by

$$
\begin{gathered}
\left(a_{0}, \ldots, a_{n}\right) \sim\left(b_{0}, \ldots, b_{n}\right) \Longleftrightarrow \\
\left(a_{0}, \ldots, a_{n}\right)=\lambda\left(b_{0}, \ldots, b_{n}\right) \text { for some } 0 \neq \lambda \in F
\end{gathered}
$$

The projective space \mathbb{P}_{F}^{n} over F is the set of equivalence classes for this equivalence relation, $\mathbb{P}_{F}^{n}=\left(F^{n+1} \backslash\{0\}\right) / \sim$. (Equivalently, \mathbb{P}_{F}^{n} is the set of 1-dimensional subspaces of the vector space F^{n+1}.) The action of $\mathrm{GL}_{n+1}(F)$ on F^{n+1} by left multiplication, $(A, \mathbf{x}) \rightarrow A \mathbf{x}$, induces a faithful action of $\mathrm{PGL}_{n+1}(F)$ on \mathbb{P}_{F}^{n}.
(a) Show that if $n=1$ then we have a bijection $\mathbb{P}_{F}^{1} \rightarrow F \cup\{\infty\}$ given by

$$
\left(a_{0}, a_{1}\right) \mapsto \frac{a_{1}}{a_{0}}
$$

Show that under this bijection the action of $\mathrm{PGL}_{2}(F)$ on \mathbb{P}_{F}^{1} corresponds to its action on $F \cup\{\infty\}$ by Möbius transformations: for

$$
A=\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right] \in \mathrm{PGL}_{2}(F)
$$

and $z \in F \cup\{\infty\}$,

$$
A \cdot z=\frac{a z+b}{c z+d}
$$

[Note: Usually the term Möbius transformation is used only in the case $F=\mathbb{C}$; we are using it more generally here.]
(b) Show more generally that there is a bijection

$$
\mathbb{P}_{F}^{n} \rightarrow F^{n} \cup \mathbb{P}_{F}^{n-1}
$$

given by

$$
\left[\left(a_{0}, \ldots, a_{n}\right)\right] \mapsto \begin{cases}\left(\frac{a_{1}}{a_{0}}, \ldots, \frac{a_{n}}{a_{0}}\right) \in F^{n} & \text { if } a_{0} \neq 0 \\ {\left[\left(a_{1}, \ldots, a_{n}\right)\right] \in \mathbb{P}_{F}^{n-1}} & \text { if } a_{0}=0\end{cases}
$$

(c) (For those who have studied point set topology.) Suppose that $F=\mathbb{R}$ or $F=\mathbb{C}$, give F^{n+1} the usual (Euclidean) topology, and give \mathbb{P}_{F}^{n} the quotient topology. Prove that \mathbb{P}_{F}^{n} is compact. (This is one of the main reasons projective space is important.)

Review of definitions and notation for matrix groups
Let F be a field and $n \in \mathbb{N}$. The general linear group $\mathrm{GL}_{n}(F)$ denotes the group of invertible $n \times n$ matrices with entries in the field F, and group law given by matrix multiplication. The special linear group $\mathrm{SL}_{n}(F) \triangleleft \mathrm{GL}_{n}(F)$ is the normal subgroup consisting of matrices with determinant 1. The center $Z:=Z\left(\mathrm{GL}_{n}(F)\right)$ of $\mathrm{GL}_{n}(F)$ is the normal subgroup consisting of scalar matrices λI where $0 \neq \lambda \in F$ and I denotes the identity matrix (compare HW1Q6a). The projective general linear group $\mathrm{PGL}_{n}(F)$ is the quotient group $\mathrm{GL}_{n}(F) / Z$. The projective special linear group $\mathrm{PSL}_{n}(F)$ is the quotient group $\mathrm{SL}_{n}(F) / Z \cap \mathrm{SL}_{n}(F)$. In particular $\mathrm{PSL}_{n}(F)$ is a normal subgroup of $\mathrm{PGL}_{n}(F)$.

Hints:

(1) Identify the left and right cosets of H in G.
(3) (b) By Q1, a subgroup of A_{4} of order 6 is normal. Equivalently, it is a union of conjugacy classes of G.
(7) (a) $\mathrm{PGL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ acts faithfully on $\mathbb{P}_{\mathbb{Z} / 3 \mathbb{Z}}^{1}=\mathbb{Z} / 3 \mathbb{Z} \cup\{\infty\}$ (why?). (More generally, $\mathrm{PGL}_{n+1}(F)$ acts faithfully on \mathbb{P}_{F}^{n} for any field F and $n \in \mathbb{N}$.) (b) Note first that by its definition $\mathrm{PSL}_{n}(F)$ is a subgroup of $\mathrm{PGL}_{n}(F)$. Compute $\left|\operatorname{PSL}_{2}(\mathbb{Z} / 3 \mathbb{Z})\right|=12$ and prove that S_{4} has a unique subgroup of index 2 .
(8) Consider the class equation of such a group.
(9) (a) Try to construct a counterexample. (b) Recall that we say a subgroup H of a group G is normal (and write $H \triangleleft G$) if $g H^{-1}=H$ for all $g \in G$. In fact, to show that H is normal it suffices to check that $g H^{-1} \subset H$ for all $g \in G$ (why?).
(11) (c) Show that \mathbb{P}_{F}^{n} is the image of a sphere (of some dimension depending on n and F) under a continuous map.

