Math 611 Homework 1

Paul Hacking

September 14, 2015
(1) Let G be a group and $a, b \in G$ elements such that a has order 7 and $a^{3} b=b a^{3}$. Show that $a b=b a$.
(2) Let G be a group of order $|G|=22$. Let $a, b \in G$ be two elements such that $a \neq e$ and b is not a power of a. Show that G is generated by a and b.
[Recall that for G a group and elements $a_{1}, a_{2}, \ldots, a_{n} \in G$ the subgroup generated by $a_{1}, a_{2}, \ldots, a_{n}$, denoted $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, is the smallest subgroup containing $a_{1}, a_{2}, \ldots, a_{n}$. Equivalently $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ consists of the elements

$$
a_{i_{1}}^{\epsilon_{i_{1}}} \cdots a_{i_{m}}^{\epsilon_{i_{m}}}
$$

for m a non-negative integer, $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$, and $\epsilon_{1}, \ldots, \epsilon_{m} \in$ $\{ \pm 1\}$. And we say G is generated by a_{1}, \ldots, a_{n} if $G=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.]
(3) Let G be a group of order $|G|=18, G^{\prime}$ a group of order $\left|G^{\prime}\right|=15$, and $\varphi: G \rightarrow G^{\prime}$ a non-trivial homomorphism. (We say a group homomorphism φ is non-trivial if $\varphi(g) \neq e$ for some $g \in G$.) What is the order of the kernel

$$
\operatorname{ker}(\varphi):=\{g \in G \mid \varphi(g)=e\}
$$

of φ ?
(4) Recall that the order of an element g of a group G is the least $n \in \mathbb{N}$ such that $g^{n}=e$ (or ∞ if no such n exists). Let G be a group and $a, b \in G$. Show that $a b$ and $b a$ have the same order.
(5) Let G be a group. We say a subgroup H of G is proper if $H \neq\{e\}$ and $H \neq G$. Which groups have no proper subgroups?
(6) Let G be a group. The center $Z(G)$ of G is the subset of G consisting of elements which commute with every element of G, i.e.,

$$
Z(G)=\{z \in G \mid z g=g z \quad \forall g \in G\} .
$$

The center $Z(G)$ is a normal subgroup of G. Determine the center of the following groups.
(a) The group $\mathrm{GL}_{n}(\mathbb{R})$ of $n \times n$ invertible matrices with real entries.
(b) The symmetric group S_{n} of permutations of n objects.
(c) The dihedral group D_{n} of symmetries of a regular n-gon $(n \geq 3)$.
(7) Let D_{n} denote the dihedral group of symmetries of the regular n-gon, $n \geq 3$.
(a) Let a be counterclockwise rotation by $2 \pi / n$ about the center of mass of the polygon and b be reflection in an axis of symmetry of the polygon. Show that $b a=a^{-1} b$.
(b) Show that $D_{2 n}$ is isomorphic to $D_{n} \times \mathbb{Z} / 2 \mathbb{Z}$ if n is odd.
(c) Show that $D_{2 n}$ is not isomorphic to $D_{n} \times \mathbb{Z} / 2 \mathbb{Z}$ if n is even.
(8) Recall that the quaternion group Q_{8} is the group of order 8 defined by

$$
\begin{gathered}
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\} \\
i^{2}=j^{2}=k^{2}=-1, \\
i j=k, j k=i, k i=j, \\
j i=-k, k j=-i, i k=-j .
\end{gathered}
$$

Prove that Q_{8} is not isomorphic to D_{4} (the group of symmetries of a square).
(9) When we specify a group G by generators and relations we mean the following. Let the generators be denoted a_{1}, \ldots, a_{n}, and write the relations in the form $r_{j}=e, j=1, \ldots, m$, where r_{j} is a word in $a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}$. Then G is the quotient of the free group F on a_{1}, \ldots, a_{n} (whose elements are arbitrary words in $a_{1}^{ \pm 1}, \ldots, a_{n}^{ \pm 1}$) by the smallest normal subgroup N containing the relations r_{1}, \ldots, r_{m}. Informally, it is the group generated by the set of elements a_{1}, \ldots, a_{n} such that the
relations which hold in the group between these elements are those which can be deduced from the given relations $r_{1}=\cdots=r_{m}=e$ using the group axioms. An equivalent formulation is the following "universal property" : given a group G^{\prime} and elements $a_{i}^{\prime} \in G^{\prime}$ satisfying the relations $r_{1}=\cdots=r_{m}=e$ (with a_{i} replaced by a_{i}^{\prime} for each i), there is a unique homomorphism $G \rightarrow G^{\prime}$ such that $a_{i} \mapsto a_{i}^{\prime}$ for each i.
Let G denote the group defined by generators and relations as follows:

$$
G=\left\langle a, b \mid a^{3}=b^{4}=e, \quad b a=a^{-1} b\right\rangle .
$$

(Remark: The group G is a semidirect product $\mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z}$ of $\mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$.)
(a) Show that there is a surjective homomorphism $G \rightarrow \mathbb{Z} / 4 \mathbb{Z}$ with kernel isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$. In particular, G is a group of order 12.
(b) Prove that no two of the groups D_{6}, A_{4}, and G are isomorphic.
(10) Let G be a group. We say two elements $a, b \in G$ are conjugate if there is a $g \in G$ such that $b=g a g^{-1}$. Consider the two matrices

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Are A and B conjugate in $\mathrm{GL}_{2}(\mathbb{R})$? Are A and B conjugate in $\mathrm{SL}_{2}(\mathbb{R})$? (Recall that $\mathrm{SL}_{n}(\mathbb{R})$ denotes the normal subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ consisting of matrices with determinant 1.)
(11) Let G be a group and H a subgroup of G. Recall that the left cosets of H in G are the subsets

$$
g H:=\{g h \mid h \in H\}
$$

where $g \in G$. The left cosets give a partition of G. (Two left cosets $g H$ and $g^{\prime} H$ are equal iff $g^{-1} g^{\prime} \in H$, and if they are not equal then they are disjoint.) The right cosets $H g$ are defined similarly and give another partition of G. Determine the partitions into left and right cosets of H in G in the following cases.
(a) $G=A_{4}$, the alternating group on 4 objects, and $H=\langle(123)\rangle$, the subgroup generated by the 3-cycle (123).
(b)

$$
G=\left\{\left.\left(\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}, \quad x>0\right\},
$$

a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$, and

$$
H=\left\{\left.\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}, \quad x>0\right\} .
$$

To describe the cosets here, identify G with the halfplane $x>0$ of the $x y$-plane and give a geometric description of the cosets (include a picture).

Hints:

6 (a) Test the commutation relation of a given matrix Z with the elementary matrices $E_{k l}$ having entry 1 in position (k, l) and zeroes elsewhere. (b) Note that $z g=g z$ iff $z=g z g^{-1}$. Now consider the cycle decomposition of z.

7 (a) Position the center of mass of the polygon at the origin in \mathbb{R}^{2} so that its symmetries are realized by matrices and compute explicitly. (b) What is the center of $D_{2 n}$?

8 Count the number of elements of each order.
9 (a) Find a convenient "normal form" for the elements of G. Compare with the case of the dihedral group. Now use the universal property to define the homomorphism and show that the normal form of an element is unique.

10 The condition $b=g a g^{-1}$ can be rewritten $b g=g a$. Now compute explicitly

