Math 462 Final review questions

Paul Hacking

April 24, 2015
(1) (a) Find a Mobius transformation

$$
f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}, \quad f(z)=\frac{a z+b}{c z+d}
$$

such that $f(2)=0, f(4)=1$, and $f(1+i)=\infty$.
[Here $a, b, c, d \in \mathbb{C}$ and $a d-b c \neq 0$.]
(b) Let C be the circle in the complex plane \mathbb{C} with center $1+i$ and radius 1. Find a Mobius transformation

$$
g: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}
$$

such that $g(C)=\mathbb{R} \cup\{\infty\}$ (the x-axis).
(2) Let $S^{2} \subset \mathbb{R}^{3}$ be the sphere with center the origin and radius 1 , and

$$
\bar{F}: S^{2} \rightarrow \mathbb{R}^{2} \cup\{\infty\}
$$

the map given by stereographic projection from the north pole $N=$ $(0,0,1)$ to the $x y$-plane. Compute the image $\bar{F}(C)$ of the circle $C \subset S^{2}$ given by $C=\Pi \cap S^{2}$ where $\Pi \subset \mathbb{R}^{3}$ is the plane given by the following equations.
(a) $x+y+2 z=2$.
(b) $4 x+2 y+5 z=6$.
[Hint: Recall the formulas

$$
F(x, y, z)=\frac{1}{1-z}(x, y)
$$

and

$$
F^{-1}(u, v)=\frac{1}{u^{2}+v^{2}+1}\left(2 u, 2 v, u^{2}+v^{2}-1\right) .
$$

]
(3) Consider stereographic projection $\bar{F}: S^{2} \rightarrow \mathbb{R}^{2} \cup\{\infty\}$ as above. If we define a notion of distance on the extended plane $\mathbb{R}^{2} \cup\{\infty\}$ corresponding to the spherical distance on S^{2} under stereographic projection, then the length of a curve

$$
\gamma:[a, b] \rightarrow \mathbb{R}^{2}, \quad \gamma(t)=(x(t), y(t))
$$

is given by the formula

$$
\text { length }(\gamma)=\int_{a}^{b} \frac{2 \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}{1+x(t)^{2}+y(t)^{2}} d t
$$

Check this formula by using it to compute the length of the following curves:
(a) The shortest path on S^{2} from the south pole $(0,0,-1)$ to the point $(1,0,0)$ (given by the shorter arc of the great circle through the two points).
(b) The spherical circle $C=S^{2} \cap \Pi$ where $\Pi \subset \mathbb{R}^{3}$ is the plane with equation $z=3 / 5$.
(4) Let $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be rotation about the x-axis through angle $\pi / 2$ counterclockwise as viewed from the positive x-axis. Let $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be rotation about the z-axis through angle $\pi / 2$ counterclockwise as viewed from the positive z-axis. Using quaternions or otherwise, give a geometric description of the composition $T_{2} \circ T_{1}$.
(5) Let $\mathcal{H}=\{x+i y \mid y>0\}$ denote the upper half plane model of the hyperbolic plane.
(a) Compute the hyperbolic line $L \subset \mathcal{H}$ passing through the points $1+i$ and $5+3 i$.
(b) Compute the hyperbolic line $M \subset \mathcal{H}$ through the point $2 i$ in the direction $\binom{1}{3}$.
(6) (a) Determine a hyperbolic isometry $f: \mathcal{H} \rightarrow \mathcal{H}$ such that $f(2+3 i)=1+4 i$.
(b) Let $L \subset \mathcal{H}$ be the hyperbolic line given by the circle with center 3 and radius 4 , and $M \subset \mathcal{H}$ the hyperbolic line given by the y-axis. Determine a hyperbolic isometry $g: \mathcal{H} \rightarrow \mathcal{H}$ such that $g(L)=M$.
(7) Let $z_{1}=-4+3 i$ and $z_{2}=3+4 i$.
(a) Determine the hyperbolic line L passing through z_{1} and z_{2}.
(b) Compute the hyperbolic distance $d_{\mathcal{H}}\left(z_{1}, z_{2}\right)$ (the hyperbolic length of the shortest path connecting z_{1} and z_{2} given by L).
(c) Compute the hyperbolic length of the Euclidean line segment in \mathcal{H} connecting z_{1} and z_{2}, and check that it is greater than the length of the hyperbolic line segment computed in (b).
[Hint: (b) Write down a hyperbolic isometry f such that f sends L to the y-axis. Now use the formula $d_{\mathcal{H}}\left(i y_{1}, i y_{2}\right)=\ln \left(y_{2} / y_{1}\right)$ for $y_{1}<y_{2}$.
(c) Recall that the hyperbolic length of a path

$$
\gamma:[a, b] \rightarrow \mathcal{H}, \quad \gamma(t)=x(t)+i y(t)
$$

is given by

$$
\text { length }(\gamma)=\int_{a}^{b} \frac{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}{y(t)} d t
$$

Also note that the line segment from z_{1} to z_{2} can be parametrized by setting

$$
\gamma:[0,1] \rightarrow \mathcal{H}, \quad \gamma(t)=z_{1}+t\left(z_{2}-z_{1}\right) .
$$

]
(8) Let $T \subset \mathcal{H}$ be a hyperbolic triangle.
(a) Show that the area of T is less than π.
(b) Now suppose two of the sides of T are given by the y-axis and the circle with center the origin and radius 1 . Show that the area of T is less than $\pi / 2$.
(9) Find a formula for the hyperbolic reflection $f: \mathcal{H} \rightarrow \mathcal{H}$ in the hyperbolic line L given by the circle with center 3 and radius 2 .
[Hint: First find a hyperbolic isometry $h: \mathcal{H} \rightarrow \mathcal{H}$ such that $h(L)$ is the hyperbolic line given by the circle C with center the origin and radius 1. (Here we can take $h(z)=a z+b$ for some $a, b \in \mathbb{R}, a>0$.) Now $f=h^{-1} \circ g \circ h$ where $g: \mathcal{H} \rightarrow \mathcal{H}$ is the hyperbolic reflection in $h(L)$ (why?), that is, g is given by inversion in the circle C. Finally use the known formula $g(z)=1 / \bar{z}=z /|z|^{2}$ to obtain a formula for f.]
(10) In each of the following cases, determine the fixed points of the hyperbolic isometry $f: \mathcal{H} \rightarrow \mathcal{H}$ in \mathcal{H} and $\partial \mathcal{H}$. (Here $\partial \mathcal{H}=\mathbb{R} \cup\{\infty\}$ denotes the boundary of \mathcal{H} in $\mathbb{C} \cup\{\infty\}$.) Deduce the type of the isometry f in the classification of hyperbolic isometries.
(a) $f(z)=\frac{1+z}{1-z}$.
(b) $f(z)=\frac{z}{2 z-1}$.
(c) $f(z)=\frac{5 z-18}{2 z-7}$.
(11) Consider the hyperbolic isometry

$$
T: \mathcal{H} \rightarrow \mathcal{H}, \quad T(z)=\frac{z-4}{z+5}
$$

(a) Give a geometric description of T and draw a diagram illustrating the effect of T.
(b) Find an expression $T=f^{-1} \circ S \circ f$ where $f: \mathcal{H} \rightarrow \mathcal{H}$ is a hyperbolic isometry and $S: \mathcal{H} \rightarrow \mathcal{H}$ is a hyperbolic isometry given by either $S(z)=a z$ for some $a \in \mathbb{R}$ with $a>0$, or $S(z)=z+b$ for some $b \in \mathbb{R}$.
(12) Consider the hyperbolic isometry

$$
T: \mathcal{H} \rightarrow \mathcal{H}, \quad T(z)=\frac{z-8}{z-5}
$$

(a) Give a geometric description of T and draw a diagram illustrating the effect of T.
(b) Find an expression $T=f^{-1} \circ S \circ f$ where $f: \mathcal{H} \rightarrow \mathcal{H}$ is a hyperbolic isometry and $S: \mathcal{H} \rightarrow \mathcal{H}$ is a hyperbolic isometry given by either $S(z)=a z$ for some $a \in \mathbb{R}$ with $a>0$, or $S(z)=z+b$ for some $b \in \mathbb{R}$.

