Math 462 Final review questions

Paul Hacking

April 24, 2015

(1) (a) Find a Mobius transformation

 $f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}, \quad f(z) = \frac{az+b}{cz+d}$

such that f(2) = 0, f(4) = 1, and $f(1+i) = \infty$. [Here $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$.]

(b) Let C be the circle in the complex plane \mathbb{C} with center 1 + i and radius 1. Find a Mobius transformation

 $g\colon \mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$

such that $g(C) = \mathbb{R} \cup \{\infty\}$ (the *x*-axis).

(2) Let $S^2 \subset \mathbb{R}^3$ be the sphere with center the origin and radius 1, and

$$\bar{F}: S^2 \to \mathbb{R}^2 \cup \{\infty\}$$

the map given by stereographic projection from the north pole N = (0, 0, 1) to the *xy*-plane. Compute the image $\overline{F}(C)$ of the circle $C \subset S^2$ given by $C = \Pi \cap S^2$ where $\Pi \subset \mathbb{R}^3$ is the plane given by the following equations.

- (a) x + y + 2z = 2.
- (b) 4x + 2y + 5z = 6.

[Hint: Recall the formulas

$$F(x, y, z) = \frac{1}{1 - z}(x, y)$$

and

]

$$F^{-1}(u,v) = \frac{1}{u^2 + v^2 + 1}(2u, 2v, u^2 + v^2 - 1).$$

(3) Consider stereographic projection $\overline{F}: S^2 \to \mathbb{R}^2 \cup \{\infty\}$ as above. If we define a notion of distance on the extended plane $\mathbb{R}^2 \cup \{\infty\}$ corresponding to the spherical distance on S^2 under stereographic projection, then the length of a curve

$$\gamma \colon [a,b] \to \mathbb{R}^2, \quad \gamma(t) = (x(t), y(t))$$

is given by the formula

length(
$$\gamma$$
) = $\int_{a}^{b} \frac{2\sqrt{x'(t)^{2} + y'(t)^{2}}}{1 + x(t)^{2} + y(t)^{2}} dt.$

Check this formula by using it to compute the length of the following curves:

- (a) The shortest path on S^2 from the south pole (0, 0, -1) to the point (1, 0, 0) (given by the shorter arc of the great circle through the two points).
- (b) The spherical circle $C = S^2 \cap \Pi$ where $\Pi \subset \mathbb{R}^3$ is the plane with equation z = 3/5.
- (4) Let $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ be rotation about the *x*-axis through angle $\pi/2$ counterclockwise as viewed from the positive *x*-axis. Let $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ be rotation about the *z*-axis through angle $\pi/2$ counterclockwise as viewed from the positive *z*-axis. Using quaternions or otherwise, give a geometric description of the composition $T_2 \circ T_1$.
- (5) Let $\mathcal{H} = \{x + iy \mid y > 0\}$ denote the upper half plane model of the hyperbolic plane.
 - (a) Compute the hyperbolic line $L \subset \mathcal{H}$ passing through the points 1 + i and 5 + 3i.
 - (b) Compute the hyperbolic line $M \subset \mathcal{H}$ through the point 2i in the direction $\begin{pmatrix} 1\\ 3 \end{pmatrix}$.

- (6) (a) Determine a hyperbolic isometry $f: \mathcal{H} \to \mathcal{H}$ such that f(2+3i) = 1+4i.
 - (b) Let $L \subset \mathcal{H}$ be the hyperbolic line given by the circle with center 3 and radius 4, and $M \subset \mathcal{H}$ the hyperbolic line given by the *y*-axis. Determine a hyperbolic isometry $g: \mathcal{H} \to \mathcal{H}$ such that g(L) = M.
- (7) Let $z_1 = -4 + 3i$ and $z_2 = 3 + 4i$.
 - (a) Determine the hyperbolic line L passing through z_1 and z_2 .
 - (b) Compute the hyperbolic distance $d_{\mathcal{H}}(z_1, z_2)$ (the hyperbolic length of the shortest path connecting z_1 and z_2 given by L).
 - (c) Compute the hyperbolic length of the Euclidean line segment in \mathcal{H} connecting z_1 and z_2 , and check that it is greater than the length of the hyperbolic line segment computed in (b).

[Hint: (b) Write down a hyperbolic isometry f such that f sends L to the y-axis. Now use the formula $d_{\mathcal{H}}(iy_1, iy_2) = \ln(y_2/y_1)$ for $y_1 < y_2$. (c) Recall that the hyperbolic length of a path

$$\gamma \colon [a, b] \to \mathcal{H}, \quad \gamma(t) = x(t) + iy(t)$$

is given by

$$\operatorname{length}(\gamma) = \int_{a}^{b} \frac{\sqrt{x'(t)^{2} + y'(t)^{2}}}{y(t)} dt$$

Also note that the line segment from z_1 to z_2 can be parametrized by setting

$$\gamma \colon [0,1] \to \mathcal{H}, \quad \gamma(t) = z_1 + t(z_2 - z_1).$$

]

- (8) Let $T \subset \mathcal{H}$ be a hyperbolic triangle.
 - (a) Show that the area of T is less than π .
 - (b) Now suppose two of the sides of T are given by the y-axis and the circle with center the origin and radius 1. Show that the area of T is less than π/2.
- (9) Find a formula for the hyperbolic reflection $f: \mathcal{H} \to \mathcal{H}$ in the hyperbolic line L given by the circle with center 3 and radius 2.

[Hint: First find a hyperbolic isometry $h: \mathcal{H} \to \mathcal{H}$ such that h(L) is the hyperbolic line given by the circle C with center the origin and radius 1. (Here we can take h(z) = az + b for some $a, b \in \mathbb{R}, a > 0$.) Now $f = h^{-1} \circ g \circ h$ where $g: \mathcal{H} \to \mathcal{H}$ is the hyperbolic reflection in h(L) (why?), that is, g is given by inversion in the circle C. Finally use the known formula $g(z) = 1/\overline{z} = z/|z|^2$ to obtain a formula for f.]

- (10) In each of the following cases, determine the fixed points of the hyperbolic isometry $f: \mathcal{H} \to \mathcal{H}$ in \mathcal{H} and $\partial \mathcal{H}$. (Here $\partial \mathcal{H} = \mathbb{R} \cup \{\infty\}$ denotes the boundary of \mathcal{H} in $\mathbb{C} \cup \{\infty\}$.) Deduce the type of the isometry f in the classification of hyperbolic isometries.
 - (a) $f(z) = \frac{1+z}{1-z}$.
 - (b) $f(z) = \frac{z}{2z-1}$.
 - (c) $f(z) = \frac{5z-18}{2z-7}$.
- (11) Consider the hyperbolic isometry

$$T: \mathcal{H} \to \mathcal{H}, \quad T(z) = \frac{z-4}{z+5}$$

- (a) Give a geometric description of T and draw a diagram illustrating the effect of T.
- (b) Find an expression $T = f^{-1} \circ S \circ f$ where $f : \mathcal{H} \to \mathcal{H}$ is a hyperbolic isometry and $S : \mathcal{H} \to \mathcal{H}$ is a hyperbolic isometry given by *either* S(z) = az for some $a \in \mathbb{R}$ with a > 0, or S(z) = z + b for some $b \in \mathbb{R}$.
- (12) Consider the hyperbolic isometry

$$T: \mathcal{H} \to \mathcal{H}, \quad T(z) = \frac{z-8}{z-5}.$$

- (a) Give a geometric description of T and draw a diagram illustrating the effect of T.
- (b) Find an expression T = f⁻¹ ∘S ∘f where f: H → H is a hyperbolic isometry and S: H → H is a hyperbolic isometry given by either S(z) = az for some a ∈ ℝ with a > 0, or S(z) = z + b for some b ∈ ℝ.