Math 462 Midterm, Wednesday 3/11/15, 7PM-8:30PM.
Instructions: Exam time is 90 mins. There are 7 questions for a total of 70 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully.

Q1 (10 points). Let S^{2} be a sphere in \mathbb{R}^{3} with center the origin. Let $P=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $Q=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ be two points on S^{2}.
(a) (2 points) Compute the radius R of S^{2}.
(b) (4 points) Determine the equation of the great circle passing through P and Q.
(c) (4 points) Compute the length of the shortest path from P to Q along the surface of the sphere S^{2}, and describe the shortest path geometrically.

Q2 (10 points). Let S^{2} denote the sphere in \mathbb{R}^{3} with center the origin and radius 1 . Let T be the spherical triangle on S^{2} with vertices

$$
A=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad B=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \text { and } C=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(a) (4 points) Compute the equations of the great circles given by the sides of T.
(b) (4 points) Compute the angles of T. [You may assume that each angle of T is less than or equal to $\pi / 2$ radians.]
(c) (2 points) Deduce the area of T.

Q3 (9 points) Let S^{2} be a sphere with radius R and C a spherical circle on S^{2} with spherical radius r.
(a) (6 points) Determine a formula for the circumference of C in terms of R and r. [Justify your answer carefully.]
(b) (3 points) Now suppose r is small in comparison to R. Using the approximation $\sin (x) \approx x-x^{3} / 6$ for small x, find an approximate value for the ratio A / B, where A is the circumference of C and B is the circumference of a circle in \mathbb{R}^{2} of the same radius r.

Q4 (10 points). Give an algebraic formula $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ for the following isometries of \mathbb{R}^{2}, where A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^{2}$ is a vector.
(a) (4 points) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is rotation about the point $\binom{1}{2}$ through angle π counterclockwise.
(b) (6 points) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is reflection in the line $y=x+3$ followed by translation through distance $5 \sqrt{2}$ parallel to the line in the direction of increasing x. [T is a glide reflection.]

Q5 (10 points). Give a precise geometric description of the following isometries as a translation, rotation, reflection, or glide reflection.
(a) (5 points)

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad T\binom{x}{y}=\binom{4-x}{y+5} .
$$

(b) (5 points)

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad T\binom{x}{y}=\binom{3-y}{x+7}
$$

Q6 (9 points). Consider the isometry T of \mathbb{R}^{3} given by

$$
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-y \\
z \\
-x
\end{array}\right)
$$

(a) (4 points) Compute the determinant and the trace of the 3×3 orthogonal matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
(b) (5 points) Give a precise geometric description of T. [If T is a rotation or rotary reflection the direction (counter-clockwise / clockwise) of rotation may be omitted.]

Q7 (12 points). Give a precise geometric description of the compositions $T_{2} \circ T_{1}$ of the following isometries.
(a) (6 points) $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is reflection in the line $x-2 y=-5$ and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is reflection in the line $2 x+y=10$.
(b) (6 points) $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is rotation about the y-axis through angle $\pi / 2$ counterclockwise (as viewed from the positive y-axis) and $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is rotation about the line L in direction $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ through angle π.

