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(1) Let U ⊂ C be an open set and f : U → C a continuous function. Let
C be a smooth curve contained in U , with endpoints α and β, oriented
from α to β. Recall the definition of the contour integral

∫
C
f(z)dz :

We choose a parametrization of C, that is, a function z : [a, b] → C
defined on a closed interval [a, b] ⊂ R such that (i) the range of z
equals C, (ii) the derivative z′(t) = x′(t) + iy′(t) of z(t) = x(t) + iy(t)
exists for all t ∈ [a, b] and is continuous, and (iii) as t increases from a
to b the point z(t) moves along C from α to β. Then we define∫

C

f(z) dz =

∫ b

a

f(z(t))z′(t)dt.

In each of the following cases, compute the contour integral
∫
C
f(z) dz

from first principles (that is, write down a parametrization of the curve
C and use the definition of the contour integral).

(a) C is the line segment joining 1+i and 3+2i, oriented from 1+i to
3+2i, and f(z) = z̄ (complex conjugate), that is, f(x+iy) = x−iy.

(b) C is the circle with center the point 2 + i and radius 3, oriented
counterclockwise, and f(z) = 1

z−(2+i) .

(2) Recall the following bound for contour integrals: Let U ⊂ C be an
open set, f : U → C a continuous function, and C a smooth curve of
finite length in U . Because f is continuous and C has finite length,
the values f(z) for z ∈ C are bounded, that is, for some positive real
number M we have |f(z)| ≤M for all z ∈ C. Then we have the bound∣∣∣∣ ∫

C

f(z) dz

∣∣∣∣ ≤ length(C) ·M.
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(a) Let C be the semi-circle {z = x+ iy | |z| = 2 and y ≥ 0}. Deter-
mine a bound for the contour integral∫

C

3z + 7i

z4 + 1
dz.

(b) Let C be the semi-circle {z = x+ iy | |z| = 1 and x ≥ 0}. Deter-
mine a bound for the contour integral∫

C

e(z
2) dz.

[Hint: If w = u+ iv what is |ew| ?]

(c) Let CR be the circle with center the origin and radius R, oriented
counterclockwise. Define a function

f(z) =
z5 + 3iz

z7 + 2z3 + 4
.

i. Determine a bound |f(z)| ≤ M(R) for z ∈ CR and R suffi-
ciently large, where M(R) is a function of R.

ii. Show that limR→∞
∫
CR
f(z) dz = 0.

iii. Deduce that
∫
CR
f(z) dz = 0 for R sufficiently large.

[Hint: How are the integrals over CR1 and CR2 related when
both R1 and R2 are large? What is Cauchy’s theorem? (See
Q5.)]

(3) Recall the first part of the complex fundamental theorem of calculus:
Let U ⊂ C be an open set and f : U → C a function. Let C be a curve
contained in U with end points α and β, oriented from α to β. Suppose
that f has a complex antiderivative F , that is, a function F : U → C
such that F is complex differentiable and F ′ = f . Then∫

C

f(z) dz = F (β)− F (α).

In particular, if C is a closed curve (that is, α = β) then
∫
C
f(z)dz = 0.

In each of the following cases, compute the contour integral
∫
C
f(z)dz.

(a) C a curve with endpoints 1 and i, oriented from 1 to i, and f(z) =
z3 + 4iz + 5.
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(b) C a curve with endpoints 0 and 2i, oriented from 0 to 2i, and
f(z) = e3iz.

(c) C the semi-circle {z = x + iy | |z| = 2 and x ≥ 0}, oriented
counterclockwise, and f(z) = 1

z
.

(d) C the semi-circle {z = x + iy | |z| = 2 and x ≤ 0}, oriented
counterclockwise, and f(z) = 1

z
.

[Hint: Define a single-valued version of the complex logarithm
which is complex differentiable on an open set U containing the
curve C.]

(4) Recall the construction of antiderivatives by contour integration (the
second part of the complex fundamental theorem of calculus): Let U ⊂
C be an open set and f : U → C a complex differentiable function.
Suppose that U is simply connected, that is, U is connected (any two
points in U can be joined by a curve contained in U) and there are “no
holes” (if C is a simple closed curve contained in U then the region
bounded by C is also contained in U). Then f has an antiderivative
F : U → C defined as follows: Fix a point α ∈ U . For each z ∈ U ,
choose a curve Cz in U with endpoints α and z, oriented from α to z,
and define

F (z) =

∫
Cz

f(w)dw.

(This contour integral does not depend on the choice of the curve Cz
by the assumption that U is simply connected and Cauchy’s theorem.)

In each of the following cases, determine whether the given function
f has an antiderivative. If an antiderivative does exist, either give an
explicit formula for it or express it as above using contour integrals. If
an antiderivative does not exist, explain carefully why not.

(a) f : C→ C, f(z) = sin((1 + i)z).

(b) f : C \ {0} → C, f(z) = 1/z4.

(c) f : C→ C, f(z) = e(z
2).

(d) f : C \ {2i} → C, f(z) = 1
z−2i .

(e) f : C \ {0} → C, f(z) = cos z
z

.

3



[Hint: (d) If an antiderivative exists then the integral around any closed
curve equals zero (see Q3). (e) What is Cauchy’s integral formula? (See
Q6.)]

(5) Recall Cauchy’s theorem: Let U ⊂ C be an open set, f : U → C a
complex differentiable function, and C a simple closed curve in U such
that the region bounded by C is also contained in U . Then we have∫
C
f(z)dz = 0.

In each of the following cases, determine the contour integral
∫
C
f(z) dz.

(a) C any simple closed curve in C, f(z) = e3z cos(5z) sin(z2 + 1)

(b) C the circle with center 1 + i and radius 2, oriented counterclock-
wise, and f(z) = 1

z2+9
.

[Hint: What is the domain of 1
z2+9

?]

(c) C the circle with center 3 + i and radius 2, oriented counter-
clockwise, and f(z) = Log(z) (the principal value of the complex
logarithm).

[Hint: Where is Log(z) complex differentiable?]

(d) C the boundary of the square with vertices ±1± i, oriented coun-

terclockwise, and f(z) = ez sin(z)
z3−8 .

(6) Recall Cauchy’s integral formula: Let U ⊂ C be an open set, f : U → C
a complex differentiable function, α a point in U , and C a simple closed
curve in U , oriented counterclockwise, such that α lies inside C and the
region bounded by C is contained in U . Then

f(α) =
1

2πi

∫
C

f(z)

z − α
dz.

In each of the following cases, determine the contour integral
∫
C
g(z) dz.

(a) C the circle with center the origin and radius 4, oriented counter-

clockwise, and g(z) = eiz

z−π .

(b) C the circle with center i and radius 3, oriented counterclockwise,
and g(z) = z+1

z2−4z+13
.
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[Hint: Factor the denominator of g(z) and so express g(z) in the
form f(z)/(z−α), where α is inside C and f(z) is complex differ-
entiable on an open set U containing C and the region it bounds.
Now use Cauchy’s integral formula. (It’s also possible to use par-
tial fractions, but this takes more work.)]

(c) C the circle with center 2 and radius 1, oriented counterclockwise,

and g(z) = Log(z)
z3−ez2 .

(d) C the boundary of the square with vertices 1, i,−1,−i , oriented
counterclockwise, and g(z) = z2+3

z5+z

(7) Recall Cauchy’s generalized integral formula: With the same assump-
tions and notation as in Cauchy’s integral formula above, for any pos-
itive integer n the nth complex derivative of f at α is defined and is
given by

f (n)(α) =
n!

2πi

∫
C

f(z)

(z − α)n+1
dz.

In each of the following cases, determine the contour integral
∫
C
g(z) dz.

(a) C the circle with center the origin and radius 5, and g(z) = cos(z)
(z−π)3 .

(b) C the circle with center 2i and radius 2, oriented counterclockwise,
and g(z) = 3z+5

(z2+1)2

[Hint: Factor the denominator of g(z) and so express g(z) in the
form f(z)/(z − α)k where k is a positive integer, α is inside C,
and f(z) is complex differentiable on an open set U containing C
and the region it bounds.]

(8) Let C be the circle with center the origin and radius 3, oriented coun-
terclockwise. Compute the contour integral∫

C

e2z

(z − 1)k
dz

for each integer k (not necessarily positive).

[Hint: What is Cauchy’s theorem? What is the generalized Cauchy
integral formula?]
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(9) Let C be the circle with center the origin and radius 2, oriented coun-
terclockwise. Compute the contour integral∫

C

ez

z2 − 1
dz

[Hint: The function ez

z2−1 is not defined at two points α1 and α2 inside
C. To compute the integral, divide the region bounded by C into two
parts, each containing one of the points, and express the integral over C
as a sum of two integrals. Now evaluate each integral using the Cauchy
integral formula.]

(10) Recall the Gauss mean value theorem (a special case of the Cauchy
integral formula): Let U ⊂ C be an open set, f : U → C a complex
differentiable function, α ∈ U a point, and r a positive real number
such that the circle C with center α and radius r is contained in U and
the disc bounded by C is also contained in U . Then

f(α) =
1

2π

∫ 2π

0

f(α + reit)dt

In words, f(α) is the average value of f on the circle C. Writing
f = u + iv, the same is true for u and v. In particular, it follows that
u and v can’t have a local max or a local min at any point α in their
domain. So any critical point of u or v must be a saddle point.

In each of the following cases, (i) express the given function f in the
form f(x + iy) = u(x, y) + iv(x, y), where u and v are real valued
functions of x and y, (ii) find the critical points of u, and (iii) check
that they are saddle points.

(a) f(z) = z2 + 4iz + 5

(b) f(z) = z3 − 3z.

[Hint: Recall that the critical points of the 3 functions f , u, and v are
the same. We can use the criterion from 233 for a critical point to be
a saddle point: ∂2u

∂x2
∂2u
∂y2
− ( ∂2u

∂x∂y
)2 < 0.]

(11) Recall Liouville’s theorem: Let f : C → C be a complex differentiable
function with domain the whole of C. Suppose that f is bounded, that
is, there is a positive real number M such that |f(z)| ≤M for all z ∈ C.
Then f is constant.
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(a) Show directly (without using Liouville’s theorem) that each of the
following functions either does not have domain the whole of C or
is not bounded.

i. f(z) = 1
z2+4

.

ii. f(z) = cos(z).

iii. f(z) = z2

z4+1
.

iv. f(z) = ze−z
2
.

(b) Suppose that f : C→ C is a complex differentiable function such
that there is a positive real number M such that |f(z)| ≥ M for
all z ∈ C. Prove that f is constant.

(c) Suppose that f : C→ C is a complex differentiable function such
that f(z+ 1) = f(z) and f(z+ i) = f(z) for all z ∈ C. Prove that
f is constant.

[Hint: (b) Consider the function g(z) = 1/f(z). (c) A continuous
function F : R → R on a closed and and bounded set R ⊂ R2 (e.g. a
rectangle) is bounded.]

(12) Let U ⊂ C be an open set and f : U → C a complex differentiable
function. Let α be a point in U and R a positive real number such that
the open disc with center α and radius R is contained in U . Then f
has a power series expansion about z = α

f(z) =
∞∑
n=0

an(z − α)n for |z − α| < R,

where the coefficients are given by

an =
f (n)(α)

n!
. (†)

For example, the function f(z) = 1
1−z has domain U = C \ {1} and has

power series expansion about z = 0

1

1− z
=
∞∑
n=0

zn = 1 + z + z2 + · · · for |z| < 1.
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(a) Suppose f : C → C is a complex differentiable function with do-
main the whole of C. Where is the power series expansion of f
about z = 0 valid?

(b) Compute the power series expansion about z = 0 for (i) ez and
(ii) cos(z) using the formula (†).

(c) Let α and β be complex numbers, α 6= β. Find the power se-
ries expansion of 1

z−β about z = α. Where is this power series
expansion valid?

[Hint: Write

1

z − β
=

1

(z − α)− (β − α)
=
−1

β − α
· 1

1− z−α
β−α

and use the power series expansion in the example above.]

(d) Compute the power series expansion of 1
(1−z)2 about z = 0 in two

ways: (i) by differentiating the power series expansion for 1
1−z , and

(ii) by squaring the power series expansion of 1
1−z .

[Hint: (ii) If
∑∞

n=0 anz
n and

∑∞
n=0 bnz

n are two power series which
converge for |z| < R then we can expand the product in the usual
way, obtaining

(a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · )

= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z
2 + · · ·

for |z| < R.]

(e) Compute the power series expansion for 1
(z−1)(z−i) about z = 0.

[Hint: Either use partial fractions, or multiply two power series
together as in (d).]

(13) Let an ∈ C be a sequence of complex numbers and consider the power
series

∞∑
n=0

anz
n.

Then there is a real number R ≥ 0 or R = ∞ such that the power
series converges for |z| < R and diverges for |z| > R. The number R is
called the radius of convergence of the power series. If the limit

L = lim
n→∞

|an+1/an|
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exists, then
R = 1/L.

(Here we allow the cases L = 0 and L = ∞ and use the convention
that 1/0 =∞ and 1/∞ = 0.)

Determine the radius of convergence in the following cases.

(a)
∑∞

n=0 2nzn.

(b)
∑∞

n=0 nz
n.

(c)
∑∞

n=0
3n

n!
zn.

(d)
∑∞

n=0

(
n+k
k

)
zn, where k is a fixed positive integer, and(

n+ k

k

)
=

(n+ k)!

n!k!
=

(n+ 1)(n+ 2) · · · (n+ k)

k!
.

(14) Let an be the sequence of Fibonacci numbers defined by a0 = a1 = 1
and

an = an−1 + an−2 for n ≥ 2.

The first few terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Now consider the power series

f(z) :=
∞∑
n=0

anz
n.

(a) Prove that when the series converges we have

f(z) = 1 + zf(z) + z2f(z),

and so f(z) = 1/(1− z − z2).
(b) Determine the radius of convergence of the power series f(z).

[Hint: What is the domain of the function 1/(1− z − z2)?]
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