Math 421 Midterm 1 review questions

Paul Hacking

October 9, 2015

[The symbol (\star) denotes harder problems.]

- (1) Let $z \in \mathbb{C}$ and write z = x + iy where $x, y \in \mathbb{R}$. What is the *complex* conjugate \bar{z} ? What is the geometric interpretation of the mapping $f : \mathbb{C} \to \mathbb{C}, f(z) = \bar{z}$? Show that $\overline{zw} = \bar{z}\bar{w}$ for all $z, w \in \mathbb{C}$.
- (2) Give a precise geometric description of the mapping $f : \mathbb{C} \to \mathbb{C}, f(z) = (3+4i)z$.
- (3) Compute $(1 + \sqrt{3}i)^{100}$.
- (4) Let *n* be a positive integer. Let $f: \mathbb{C} \to \mathbb{C}$ be the function defined by $f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, where a_0, a_1, \ldots, a_n are complex numbers and $a_n \neq 0$. We say *f* is a *polynomial of degree n*. What is the range of *f*? If *b* is a complex number, what are the possibilities for the number of solutions of the equation f(z) = b?
- (5) What is the range of the complex exponential function $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^{z}$?
- (6) Let w and z be complex numbers. What can you say about w and z if $e^w = e^z$?
- (7) Find all complex solutions of the following equations. Justify your answers carefully.
 - (a) $z^2 + 5z + 7 = 0$
 - (b) $z^3 + 4z = 0.$
 - (c) $z^3 5z^2 + 4z + 10 = 0.$

- (d) $z + \frac{5}{z} = 2.$ (e) $e^{z} = 1 + i.$ (f) $(\star) \sin z = i.$ (g) $z^{2} + (2 + 2i)z + i = 0.$ (h) $z^{4} - 1 = 0.$ (i) $z^{4} + 16 = 0.$ (j) $z^{3} + i = 0.$
- (8) Give a precise geometric description of the image f(R) of the region $R \subset \mathbb{C}$ under the mapping $f : \mathbb{C} \to \mathbb{C}$ (include a sketch of the image).
 - (a) $f(z) = (-2+2i)z, R = \{z = x + iy \in \mathbb{C} \mid 0 \le x \le 1 \text{ and } 0 \le y \le 1\}.$
 - (b) $f(z) = z^5$, $R = \{z = x + iy \in \mathbb{C} \mid x^2 + y^2 \le 4 \text{ and } 0 \le y \le x\}$.
 - (c) $f(z) = e^z$, $R = \{z = x + iy \in \mathbb{C} \mid 0 \le x \le 1 \text{ and } 0 \le y \le \pi/4\}.$
 - (d) $f(z) = e^{iz}, R = \{z = x + iy \in \mathbb{C} \mid y \ge 0\}.$
 - (e) $f(z) = \text{Log}(z), R = \{z = x + iy \in \mathbb{C} \mid x > 0 \text{ and } y > 0\}.$

(9) True or False?

- (a) $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.
- (b) $e^{-z} = 1/e^z$ for all $z \in \mathbb{C}$.
- (c) For $z, w \in \mathbb{C}$, if $e^z = e^w$ then z = w.
- (d) $\sin(-z) = -\sin(z)$ and $\cos(-z) = \cos(z)$ for all $z \in \mathbb{C}$.
- (e) $|\sin(z)| \le 1$ for all $z \in \mathbb{C}$.
- (f) $\cos(z+2\pi) = \cos(z)$ for all $z \in \mathbb{C}$.
- (g) $\sin(z+\pi) = -\sin(z)$ for all $z \in \mathbb{C}$.
- (h) For $z \in \mathbb{C}$, if $\sin(z) \in \mathbb{R}$ then $z \in \mathbb{R}$.
- (i) $\cos(z)^2 + \sin(z)^2 = 1$ for all $z \in \mathbb{C}$.
- (j) $e^{\log z} = z$ for all $z \in \mathbb{C}$.
- (k) $\operatorname{Log}(e^z) = z$ for all $z \in \mathbb{C}$.
- (l) Log(zw) = Log(z) + Log(w) for all nonzero $z, w \in \mathbb{C}$.
- (m) $\log(zw) = \log(z) + \log(w)$ for all nonzero $z, w \in \mathbb{C}$.

- (n) (*) For $z, w \in \mathbb{C}$, if $\cos(z) = \cos(w)$ then $z = \pm w + (2\pi)k$ for some choice of sign and integer k.
- (10) Prove that $\sin(z + \pi/2) = \cos(z)$ for all complex numbers z.
- (11) Let w and z be complex numbers. What is the definition of the multivalued expression w^{z} ? Compute all the values of $(-1)^{i}$. (Here as usual i denotes a square root of -1.)
- (12) Consider the transformation $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$, f(z) = 1/z. Let C be the circle with center $0 \in \mathbb{C}$ and radius 1. Let D be the circle with center $1 \in \mathbb{C}$ and radius 1.
 - (a) Compute the image of C under the transformation f.
 - (b) Compute the image of $D \setminus \{0\}$ under the transformation f.
 - (c) The circles C and D intersect at the point $e^{i\pi/3} = (1 + \sqrt{3}i)/2$ (why?). Show that the angle between the curves C and D at $e^{i\pi/3}$ is equal to the angle between the image curves f(C) and f(D) at $f(e^{i\pi/3})$.

[Hint: (b) Parametrize the circle $D \setminus \{0\}$ by the function $g: (-\pi, \pi) \to \mathbb{C}$, $g(\theta) = (1 + \cos \theta) + i \sin \theta$. Now compute the composition $f(g(\theta))$ and use it to determine $f(D \setminus \{0\})$.]

- (13) Let $S \subset \mathbb{R}^3$ be the sphere with center the origin and radius 1. What is the definition of the stereographic projection $\overline{F} \colon S \to \mathbb{C} \cup \{\infty\}$? What is the image of the following regions of the sphere under stereographic projection?
 - (a) The northern hemisphere $H_n = \{(x, y, z) \in S \mid z > 0\}.$
 - (b) The southern hemisphere $H_s = \{(x, y, z) \in S \mid z < 0\}.$
 - (c) The equator $E = \{(x, y, z) \in S \mid z = 0\}.$
 - (d) The "eastern hemisphere" $H_e = \{(x, y, z) \in S \mid x > 0\}.$
 - (e) The "polar ice cap" $I = \{(x, y, z) \in S \mid z > \frac{3}{4}\}.$
- (14) Let U be a subset of the complex plane and $f: U \to \mathbb{C}$ a function. What does it mean to say a function f is complex differentiable at a point $a \in U$? In each of the following cases, determine whether the function $f: \mathbb{C} \to \mathbb{C}$ is complex differentiable.

- (a) f(x+iy) = (2x+4y) + (3x+5y)i.
- (b) $f(x+iy) = (3x^2 2xy 3y^2) + (x^2 + 6xy y^2)i.$
- (c) $f(x+iy) = (e^y \cos x) (e^y \sin x)i$.

[Hint: A function f(x, y) = (u(x, y), v(x, y)) is real differentiable if the partial derivatives of u and v exist and are continuous. A function f(x + iy) = u(x, y) + iv(x, y) is complex differentiable if it is real differentiable (identifying $\mathbb{C} = \mathbb{R}^2$) and the Cauchy–Riemann equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ are satisfied.]

(15) Compute the image of the region $R = \{z = x + iy \in \mathbb{C} \mid x \ge 1\}$ under the mapping $f : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ given by f(z) = 1/z.

[Hint: First observe that f is invertible with inverse $f^{-1} = f$. Now write f(z) = w = u + iv. Then $z = f^{-1}(w)$. Use this to write the condition $x \ge 1$ in terms of u and v, and so determine an inequality defining the image f(R). Finally use the inequality to give a geometric description of f(R) ("complete the square").]

- (16) Consider the function $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \cos(z)$. Write f(z) = w = u + iv. Let c be a real number.
 - (a) Show that for $c \neq 0$ the image of the horizontal line y = c under the transformation f is an ellipse in the uv-plane given by the equation

$$\left(\frac{u}{a}\right)^2 + \left(\frac{v}{b}\right)^2 = 1$$

where a, b are positive real numbers depending on c. (You should express a and b as functions of c.)

- (b) What is the image of the x-axis (the horizontal line y = 0) under the transformation f?
- (c) Suppose c is not an integer multiple of $\pi/2$. Show that the image of the line x = c is one half of the hyperbola in the *uv*-plane given by the equation

$$\left(\frac{u}{a}\right)^2 - \left(\frac{v}{b}\right)^2 = 1$$

where a, b are positive real numbers depending on c. (You should express a and b as functions of c.)

- (d) Let k be an integer. What is the image of the line $x = k(\pi/2)$ under the transformation f?
- (e) Use parts (a)–(d) to draw a sketch of the image of the coordinate grid in the xy-plane under the transformation f.

[Hint: Recall the formula $\cos z = \cos x \cosh y - i \sin x \sinh y$. The hyperbola with a = b = 1 was discussed in HW3Q6. The general case is similar. (e) What can you say about the angles between the curves?]