Math 421 Midterm 1 review questions

Paul Hacking

October 9, 2015
[The symbol (\star) denotes harder problems.]
(1) Let $z \in \mathbb{C}$ and write $z=x+i y$ where $x, y \in \mathbb{R}$. What is the complex conjugate \bar{z} ? What is the geometric interpretation of the mapping $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\bar{z}$? Show that $\overline{z w}=\bar{z} \bar{w}$ for all $z, w \in \mathbb{C}$.
(2) Give a precise geometric description of the mapping $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=$ $(3+4 i) z$.
(3) Compute $(1+\sqrt{3} i)^{100}$.
(4) Let n be a positive integer. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function defined by $f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n}$ are complex numbers and $a_{n} \neq 0$. We say f is a polynomial of degree n. What is the range of f ? If b is a complex number, what are the possibilities for the number of solutions of the equation $f(z)=b$?
(5) What is the range of the complex exponential function $f: \mathbb{C} \rightarrow \mathbb{C}$, $f(z)=e^{z}$?
(6) Let w and z be complex numbers. What can you say about w and z if $e^{w}=e^{z}$?
(7) Find all complex solutions of the following equations. Justify your answers carefully.
(a) $z^{2}+5 z+7=0$
(b) $z^{3}+4 z=0$.
(c) $z^{3}-5 z^{2}+4 z+10=0$.
(d) $z+\frac{5}{z}=2$.
(e) $e^{z}=1+i$.
(f) $(\star) \sin z=i$.
(g) $z^{2}+(2+2 i) z+i=0$.
(h) $z^{4}-1=0$.
(i) $z^{4}+16=0$.
(j) $z^{3}+i=0$.
(8) Give a precise geometric description of the image $f(R)$ of the region $R \subset \mathbb{C}$ under the mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ (include a sketch of the image).
(a) $f(z)=(-2+2 i) z, R=\{z=x+i y \in \mathbb{C} \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}$.
(b) $f(z)=z^{5}, R=\left\{z=x+i y \in \mathbb{C} \mid x^{2}+y^{2} \leq 4\right.$ and $\left.0 \leq y \leq x\right\}$.
(c) $f(z)=e^{z}, R=\{z=x+i y \in \mathbb{C} \mid 0 \leq x \leq 1$ and $0 \leq y \leq \pi / 4\}$.
(d) $f(z)=e^{i z}, R=\{z=x+i y \in \mathbb{C} \mid y \geq 0\}$.
(e) $f(z)=\log (z), R=\{z=x+i y \in \mathbb{C} \mid x>0$ and $y>0\}$.
(9) True or False?
(a) $e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.
(b) $e^{-z}=1 / e^{z}$ for all $z \in \mathbb{C}$.
(c) For $z, w \in \mathbb{C}$, if $e^{z}=e^{w}$ then $z=w$.
(d) $\sin (-z)=-\sin (z)$ and $\cos (-z)=\cos (z)$ for all $z \in \mathbb{C}$.
(e) $|\sin (z)| \leq 1$ for all $z \in \mathbb{C}$.
(f) $\cos (z+2 \pi)=\cos (z)$ for all $z \in \mathbb{C}$.
(g) $\sin (z+\pi)=-\sin (z)$ for all $z \in \mathbb{C}$.
(h) For $z \in \mathbb{C}$, if $\sin (z) \in \mathbb{R}$ then $z \in \mathbb{R}$.
(i) $\cos (z)^{2}+\sin (z)^{2}=1$ for all $z \in \mathbb{C}$.
(j) $e^{\log z}=z$ for all $z \in \mathbb{C}$.
(k) $\log \left(e^{z}\right)=z$ for all $z \in \mathbb{C}$.
(l) $\log (z w)=\log (z)+\log (w)$ for all nonzero $z, w \in \mathbb{C}$.
(m) $\log (z w)=\log (z)+\log (w)$ for all nonzero $z, w \in \mathbb{C}$.
(n) (\star) For $z, w \in \mathbb{C}$, if $\cos (z)=\cos (w)$ then $z= \pm w+(2 \pi) k$ for some choice of sign and integer k.
(10) Prove that $\sin (z+\pi / 2)=\cos (z)$ for all complex numbers z.
(11) Let w and z be complex numbers. What is the definition of the multivalued expression w^{z} ? Compute all the values of $(-1)^{i}$. (Here as usual i denotes a square root of -1 .)
(12) Consider the transformation $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}, f(z)=1 / z$. Let C be the circle with center $0 \in \mathbb{C}$ and radius 1 . Let D be the circle with center $1 \in \mathbb{C}$ and radius 1 .
(a) Compute the image of C under the transformation f.
(b) Compute the image of $D \backslash\{0\}$ under the transformation f.
(c) The circles C and D intersect at the point $e^{i \pi / 3}=(1+\sqrt{3} i) / 2$ (why?). Show that the angle between the curves C and D at $e^{i \pi / 3}$ is equal to the angle between the image curves $f(C)$ and $f(D)$ at $f\left(e^{i \pi / 3}\right)$.
[Hint: (b) Parametrize the circle $D \backslash\{0\}$ by the function $g:(-\pi, \pi) \rightarrow$ $\mathbb{C}, g(\theta)=(1+\cos \theta)+i \sin \theta$. Now compute the composition $f(g(\theta))$ and use it to determine $f(D \backslash\{0\})$.]
(13) Let $S \subset \mathbb{R}^{3}$ be the sphere with center the origin and radius 1 . What is the definition of the stereographic projection $\bar{F}: S \rightarrow \mathbb{C} \cup\{\infty\}$? What is the image of the following regions of the sphere under stereographic projection?
(a) The northern hemisphere $H_{n}=\{(x, y, z) \in S \mid z>0\}$.
(b) The southern hemisphere $H_{s}=\{(x, y, z) \in S \mid z<0\}$.
(c) The equator $E=\{(x, y, z) \in S \mid z=0\}$.
(d) The "eastern hemisphere" $H_{e}=\{(x, y, z) \in S \mid x>0\}$.
(e) The "polar ice cap" $I=\left\{(x, y, z) \in S \left\lvert\, z>\frac{3}{4}\right.\right\}$.
(14) Let U be a subset of the complex plane and $f: U \rightarrow \mathbb{C}$ a function. What does it mean to say a function f is complex differentiable at a point $a \in U$? In each of the following cases, determine whether the function $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable.
(a) $f(x+i y)=(2 x+4 y)+(3 x+5 y) i$.
(b) $f(x+i y)=\left(3 x^{2}-2 x y-3 y^{2}\right)+\left(x^{2}+6 x y-y^{2}\right) i$.
(c) $f(x+i y)=\left(e^{y} \cos x\right)-\left(e^{y} \sin x\right) i$.
[Hint: A function $f(x, y)=(u(x, y), v(x, y))$ is real differentiable if the partial derivatives of u and v exist and are continuous. A function $f(x+i y)=u(x, y)+i v(x, y)$ is complex differentiable if it is real differentiable (identifying $\mathbb{C}=\mathbb{R}^{2}$) and the Cauchy-Riemann equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ are satisfied.]
(15) Compute the image of the region $R=\{z=x+i y \in \mathbb{C} \mid x \geq 1\}$ under the mapping $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ given by $f(z)=1 / z$.
[Hint: First observe that f is invertible with inverse $f^{-1}=f$. Now write $f(z)=w=u+i v$. Then $z=f^{-1}(w)$. Use this to write the condition $x \geq 1$ in terms of u and v, and so determine an inequality defining the image $f(R)$. Finally use the inequality to give a geometric description of $f(R)$ ("complete the square").]
(16) Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\cos (z)$. Write $f(z)=w=$ $u+i v$. Let c be a real number.
(a) Show that for $c \neq 0$ the image of the horizontal line $y=c$ under the transformation f is an ellipse in the $u v$-plane given by the equation

$$
\left(\frac{u}{a}\right)^{2}+\left(\frac{v}{b}\right)^{2}=1
$$

where a, b are positive real numbers depending on c. (You should express a and b as functions of c.)
(b) What is the image of the x-axis (the horizontal line $y=0$) under the transformation f ?
(c) Suppose c is not an integer multiple of $\pi / 2$. Show that the image of the line $x=c$ is one half of the hyperbola in the $u v$-plane given by the equation

$$
\left(\frac{u}{a}\right)^{2}-\left(\frac{v}{b}\right)^{2}=1
$$

where a, b are positive real numbers depending on c. (You should express a and b as functions of c.)
(d) Let k be an integer. What is the image of the line $x=k(\pi / 2)$ under the transformation f ?
(e) Use parts (a)-(d) to draw a sketch of the image of the coordinate grid in the $x y$-plane under the transformation f.
[Hint: Recall the formula $\cos z=\cos x \cosh y-i \sin x \sinh y$. The hyperbola with $a=b=1$ was discussed in HW3Q6. The general case is similar. (e) What can you say about the angles between the curves?]

