Math 421 Homework 9

Paul Hacking

December 2, 2015

(1) Consider the function

$$\phi \colon \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \quad \phi(x,y) = \log(x^2 + y^2).$$

Show that ϕ is harmonic.

- (2) For each of the following harmonic functions $\phi \colon \mathbb{R}^2 \to \mathbb{R}$, find a harmonic conjugate ψ of ϕ , that is, a function $\psi \colon \mathbb{R}^2 \to \mathbb{R}$ such that $f \colon \mathbb{C} \to \mathbb{C}, f(x+iy) = \phi(x,y) + i\psi(x,y)$ is a complex differentiable function.
 - (a) $\phi(x,y) = x xy$.
 - (b) $\phi(x,y) = e^y \cos x$.
 - (c) $\phi(x,y) = 3x^2y y^3$.

[Hint: Use the Cauchy–Riemann equations to determine ψ .]

(3) Consider the function

$$f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \quad f(z) = \frac{1}{z}.$$

- (a) Write f in the form f(x + iy) = u(x, y) + iv(x, y) where $u \colon \mathbb{R}^2 \setminus \{(0, 0)\} \to \mathbb{R}$ and $v \colon \mathbb{R}^2 \setminus \{(0, 0)\} \to \mathbb{R}$.
- (b) Show that the level curves of u are the y-axis and the circles with center on the x-axis passing through the origin. (Here a *level curve* of the function u = u(x, y) is a curve in \mathbb{R}^2 with equation u(x, y) = c for some constant $c \in \mathbb{R}$.)

- (c) Determine the level curves of v.
- (d) Using your answers to parts (b) and (c), explain geometrically why the level curves of u and v are orthogonal.

[Hint: (b) For $c \neq 0$, clear denominators in the equation u(x, y) = cand complete the square to obtain the equation of a circle.]

(4) Consider the function

$$\phi \colon \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \quad \phi(x,y) = \log(\sqrt{x^2 + y^2}).$$

The function ϕ is harmonic. In this question we will show that ϕ is *not* the real part of a complex differentiable function $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$.

- (a) Suppose that there does exist a complex differentiable function f with real part ϕ , and write $f(x + iy) = \phi(x, y) + i\psi(x, y)$ for some $\psi \colon \mathbb{R}^2 \setminus \{(0, 0\} \to \mathbb{R})$. Use the Cauchy–Riemann equations to compute the vector field $\mathbf{V} := \nabla \psi = (\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}).$
- (b) By the fundamental theorem of calculus, we have

$$\int_C \nabla \psi \cdot d\mathbf{x} = \psi(\beta) - \psi(\alpha)$$

for *C* a curve in $\mathbb{R}^2 \setminus \{(0,0)\}$ with endpoints α and β , oriented from α to β . In particular $\int_C \nabla \psi \cdot d\mathbf{x} = 0$ for *C* a closed curve. Show however that $\int_C \mathbf{V} \cdot d\mathbf{x} \neq 0$ for *C* the circle with center the origin and radius 1, oriented counterclockwise. This is a contradiction, so there does not exist a complex differentiable function f with real part ϕ .

[Hint: If $\mathbf{V} = (P,Q)$ and $\mathbf{x}: [a,b] \to \mathbb{R}^2$, $\mathbf{x}(t) = (x(t), y(t))$ is a parametrization of C, then

$$\int_C \mathbf{V} \cdot d\mathbf{x} = \int_C P dx + Q dy = \int_a^b P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) dt.$$

(5) For each of the following pairs of open sets $U \subset \mathbb{C}$ and $V \subset \mathbb{C}$, find a complex differentiable function $f: U \to \mathbb{C}$ such that f is one-to-one and the range of f equals V.

(a)

$$U = \{z = x + iy \mid 0 < x < 1 \text{ and } 0 < y < 1\}$$
and

$$V = \{w = u + iv \mid -2 < u < 0 \text{ and } 0 < v < 2\}.$$
(b)

$$U = \{z = x + iy \mid x > 0 \text{ and } y > 0\} \text{ and } V = \{w = u + iv \mid v > 0\}.$$
(c)

$$U = \{z = x + iy \mid 0 < y < \pi\} \text{ and } V = \{w = u + iv \mid v > 0\}.$$
(d)

$$U = \{z = x + iy \mid |z| < 1 \text{ and } x > 0\}$$

and

 $V = \{ w = u + iv \mid u < 0 \text{ and } -\pi/2 < v < \pi/2 \}.$

(e)
$$U = \{z \mid |z| < 1\}$$
 and $V = \{w = u + iv \mid v > 0\}.$

[Hints: (a)–(d) can be done with standard functions. For (e) use a linear fractional transformation.]

(6) For each of the following pairs of open sets $U \subset \mathbb{C}$ and $V \subset \mathbb{C}$, find a complex differentiable function $f: U \to \mathbb{C}$ such that f is one-to-one and the range of f equals V.

(a)
$$U = \{z = x + iy \mid 0 < x < 1\}$$
 and $V = \{w = u + iv \mid u > 0\}$.
(b)

$$U = \{ z = x + iy \mid x > 0, y > 0 \text{ and } |z| < 1 \}$$

and

$$V = \{ w = u + iv \mid 0 < u < 1 \text{ and } v > 0 \}.$$

(c)

$$U = \{ z \mid |z - 1| > 1 \text{ and } |z - 2| < 2 \}$$

and

$$V = \{ w = u + iv \mid 0 < u < 1 \}$$

(d)

$$U = \{ z = x + iy \mid |z| < 1 \text{ and } x > 0 \}$$

and

$$V = \{ w = u + iv \mid v > 0 \}.$$

[Hints: (a) Compare Q5(c). Here you need to combine with rotation and scaling. (b) Compare Q5(d). (c) Begin by applying a linear fractional transformation f such that f(U) is "simpler" than U. For an LFT f and a circle $C \subset \mathbb{C}^2$, f(C) is a line if C passes through the point p such that $f(p) = \infty$. (d) Begin by applying a LFT.]