Math 421 Homework 9

Paul Hacking

December 2, 2015
(1) Consider the function

$$
\phi: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}, \quad \phi(x, y)=\log \left(x^{2}+y^{2}\right)
$$

Show that ϕ is harmonic.
(2) For each of the following harmonic functions $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$, find a harmonic conjugate ψ of ϕ, that is, a function $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=\phi(x, y)+i \psi(x, y)$ is a complex differentiable function.
(a) $\phi(x, y)=x-x y$.
(b) $\phi(x, y)=e^{y} \cos x$.
(c) $\phi(x, y)=3 x^{2} y-y^{3}$.
[Hint: Use the Cauchy-Riemann equations to determine ψ.]
(3) Consider the function

$$
f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, \quad f(z)=\frac{1}{z}
$$

(a) Write f in the form $f(x+i y)=u(x, y)+i v(x, y)$ where $u: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ and $v: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$.
(b) Show that the level curves of u are the y-axis and the circles with center on the x-axis passing through the origin. (Here a level curve of the function $u=u(x, y)$ is a curve in \mathbb{R}^{2} with equation $u(x, y)=c$ for some constant $c \in \mathbb{R}$.)
(c) Determine the level curves of v.
(d) Using your answers to parts (b) and (c), explain geometrically why the level curves of u and v are orthogonal.
[Hint: (b) For $c \neq 0$, clear denominators in the equation $u(x, y)=c$ and complete the square to obtain the equation of a circle.]
(4) Consider the function

$$
\phi: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}, \quad \phi(x, y)=\log \left(\sqrt{x^{2}+y^{2}}\right)
$$

The function ϕ is harmonic. In this question we will show that ϕ is not the real part of a complex differentiable function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$.
(a) Suppose that there does exist a complex differentiable function f with real part ϕ, and write $f(x+i y)=\phi(x, y)+i \psi(x, y)$ for some $\psi: \mathbb{R}^{2} \backslash\{(0,0\} \rightarrow \mathbb{R}$. Use the Cauchy-Riemann equations to compute the vector field $\mathbf{V}:=\nabla \psi=\left(\frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y}\right)$.
(b) By the fundamental theorem of calculus, we have

$$
\int_{C} \nabla \psi \cdot d \mathbf{x}=\psi(\beta)-\psi(\alpha)
$$

for C a curve in $\mathbb{R}^{2} \backslash\{(0,0)\}$ with endpoints α and β, oriented from α to β. In particular $\int_{C} \nabla \psi \cdot d \mathbf{x}=0$ for C a closed curve. Show however that $\int_{C} \mathbf{V} \cdot d \mathbf{x} \neq 0$ for C the circle with center the origin and radius 1, oriented counterclockwise. This is a contradiction, so there does not exist a complex differentiable function f with real part ϕ.
[Hint: If $\mathbf{V}=(P, Q)$ and $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{2}, \mathbf{x}(t)=(x(t), y(t))$ is a parametrization of C, then

$$
\begin{aligned}
& \int_{C} \mathbf{V} \cdot d \mathbf{x}=\int_{C} P d x+Q d y=\int_{a}^{b} P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t) d t . \\
&]
\end{aligned}
$$

(5) For each of the following pairs of open sets $U \subset \mathbb{C}$ and $V \subset \mathbb{C}$, find a complex differentiable function $f: U \rightarrow \mathbb{C}$ such that f is one-to-one and the range of f equals V.
(a)

$$
U=\{z=x+i y \mid 0<x<1 \text { and } 0<y<1\}
$$

and

$$
V=\{w=u+i v \mid-2<u<0 \text { and } 0<v<2\} .
$$

(b) $U=\{z=x+i y \mid x>0$ and $y>0\}$ and $V=\{w=u+i v \mid v>0\}$.
(c) $U=\{z=x+i y \mid 0<y<\pi\}$ and $V=\{w=u+i v \mid v>0\}$.
(d)

$$
U=\{z=x+i y| | z \mid<1 \text { and } x>0\}
$$

and

$$
V=\{w=u+i v \mid u<0 \text { and }-\pi / 2<v<\pi / 2\} .
$$

(e) $U=\{z| | z \mid<1\}$ and $V=\{w=u+i v \mid v>0\}$.
[Hints: (a)-(d) can be done with standard functions. For (e) use a linear fractional transformation.]
(6) For each of the following pairs of open sets $U \subset \mathbb{C}$ and $V \subset \mathbb{C}$, find a complex differentiable function $f: U \rightarrow \mathbb{C}$ such that f is one-to-one and the range of f equals V.
(a) $U=\{z=x+i y \mid 0<x<1\}$ and $V=\{w=u+i v \mid u>0\}$.
(b)

$$
U=\{z=x+i y \mid x>0, y>0 \text { and }|z|<1\}
$$

and

$$
V=\{w=u+i v \mid 0<u<1 \text { and } v>0\} .
$$

(c)

$$
U=\{z| | z-1 \mid>1 \text { and }|z-2|<2\}
$$

and

$$
V=\{w=u+i v \mid 0<u<1\} .
$$

(d)

$$
U=\{z=x+i y| | z \mid<1 \text { and } x>0\}
$$

and

$$
V=\{w=u+i v \mid v>0\} .
$$

[Hints: (a) Compare Q5(c). Here you need to combine with rotation and scaling. (b) Compare Q5(d). (c) Begin by applying a linear fractional transformation f such that $f(U)$ is "simpler" than U. For an LFT f and a circle $C \subset \mathbb{C}^{2}, f(C)$ is a line if C passes through the point p such that $f(p)=\infty$. (d) Begin by applying a LFT.]

