Math 421 Homework 8

Paul Hacking

November 22, 2015

(1) Let $U \subset \mathbb{C}$ be an open set and $f: U \to \mathbb{C}$ a complex differentiable function. We say that f has an *isolated singularity* at a point $\alpha \in \mathbb{C}$ if $\alpha \notin U$ and there is an r > 0 such that, writing

$$D = \{ z \in \mathbb{C} \mid |z - \alpha| < r \}$$

for the open disc with center α and radius r, we have $D \setminus {\alpha} \subset U$. In this case f(z) has a Laurent series expansion about $z = \alpha$

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - \alpha)^n \quad \text{for } z \in D \setminus \{\alpha\},$$

and the singularity is either a removable singularity (if $a_n = 0$ for all n < 0), a pole of order m > 0 (if $a_{-m} \neq 0$ and $a_n = 0$ for all n < -m), or an essential singularity (if $a_n \neq 0$ for infinitely many n < 0).

The coefficient a_{-1} is called the *residue of* f(z) at $z = \alpha$ and denoted $\operatorname{Res}_{z=\alpha} f(z)$. The residue is important because it can be used to compute contour integrals (Cauchy's residue theorem). In particular

$$\int_C f(z) \, dz = 2\pi i \operatorname{Res}_{z=\alpha} f(z)$$

for C a sufficiently small simple closed curve around α , oriented counterclockwise.

For each of the following functions $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$, (i) compute the Laurent series expansion $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ of f(z) about z = 0; (ii) classify the singularity as a removable singularity, a pole of order m for some positive integer m (to be determined), or an essential singularity; and (iii) determine the residue $\operatorname{Res}_{z=0} f(z)$ of f(z) at z = 0.

(a) $\frac{e^{z}}{z^{4}}$ (b) $\frac{\sin z - z}{z^{3}}$ (c) $\frac{1 - \cos 2z}{z^{5}}$ (d) $\frac{1}{z^{3}(z-1)}$ (e) $\sin(\frac{1}{z})$.

[Hint: In each case, use the known power series expansions of e^z , $\sin z$, $\cos z$, and $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ to determine the Laurent series expansion of f(z).]

- (2) For each of the following functions f(z), (i) determine the singularities of f (the points $\alpha \in \mathbb{C}$ where f is not complex differentiable) and (ii) compute the residue at each isolated singularity.
 - (a) $\frac{z}{z^2+1}$. (b) $\frac{e^z}{z^2-4z+3}$. (c) $\frac{\text{Log}(z)}{z-e}$. (d) $\frac{z^3+1}{(z-i)^2}$. (e) $\frac{e^{3z}}{(z-2)^5}$. (f) $\frac{1}{z^5-4z^4+4z^3}$.

[Hint: If $f(z) = \frac{g(z)}{(z-\alpha)^m}$ where $\alpha \in \mathbb{C}$, *m* is a positive integer, g(z) is complex differentiable at α and $g(\alpha) \neq 0$, then *f* has a pole of order *m* at α , and $\operatorname{Res}_{z=\alpha} f(z) = \frac{g^{(m-1)}(\alpha)}{(m-1)!}$. In particular, if m = 1 then $\operatorname{Res}_{z=\alpha} f(z) = g(\alpha)$, and if m = 2 then $\operatorname{Res}_{z=\alpha} f(z) = g'(\alpha)$.]

- (3) (a) Let $f(z) = \tan(z) = \frac{\sin(z)}{\cos(z)}$. Find the singularities of f and determine the residue at each singularity.
 - (b) Let C be the circle with center the origin and radius 2, oriented counterclockwise. Compute the contour integral $\int_C \tan z \, dz$.

[Hint: (a) Let $\alpha \in \mathbb{C}$ be a complex number. Suppose f(z) = a(z)/b(z) where a and b are complex differentiable at α and $a(\alpha) \neq 0$ and $b(\alpha) = 0$, $b'(\alpha) \neq 0$. In class we showed using the power series expansions of a and b about $z = \alpha$ that (i) f has a simple pole (a pole of order m = 1) at α and (ii) $\operatorname{Res}_{z=\alpha} = \frac{a(\alpha)}{b'(\alpha)}$. (b) What is Cauchy's residue theorem?]

(4) Let C be the circle with center the origin and radius 1, oriented counterclockwise. Compute the contour integral

$$\int_C z^3 e^{1/z} \, dz$$

(5) Let C be the circle with center the origin and radius 2, oriented counterclockwise. Compute the contour integral

$$\int_C \frac{z+1}{(z^2+1)(z^2+9)} \, dz.$$

(6) Let R be a positive real number. Let $C_{1,R} = [-R,R] \subset \mathbb{R} \subset \mathbb{C}$ and $C_{2,R}$ be the semicircle

$$C_{2,R} = \{ z = x + iy \mid |z| = R \text{ and } y \ge 0 \}.$$

Let C_R be the simple closed curve given by $C_R = C_{1,R} + C_{2,R}$, oriented counterclockwise. Let $f(z) = \frac{e^{iz}}{z^2+1}$.

- (a) Assume R > 1. Compute the contour integral $\int_{C_R} f(z) dz$.
- (b) Show that $\int_{C_{2,R}} f(z) dz \to 0$ as $R \to \infty$.
- (c) Using parts (a) and (b) or otherwise, determine the integrals

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, dx$$

and

$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 1} \, dx.$$

[Hints: (b) Find a bound $|f(z)| \leq M(R)$ for $z \in C_R$ using $|e^{u+iv}| = e^u$ for $u, v \in \mathbb{R}$. Deduce a bound $|\int_{C_R} f(z)dz| \leq B(R)$ and show that $B(R) \to 0$ as $R \to \infty$. (c) Relate the given real integrals to the complex integral $\int_{C_{1,R}} f(z) dz$ using $e^{ix} = \cos x + i \sin x$. Check your answer using the fact that $\sin x$ is an odd function.]

(7) (a) Does Log(z) (the principal value of the complex logarithm) have an isolated singularity at z = 0? Explain. (b) Does

$$f(z) = \frac{1}{e^{1/z} - 1}$$

have an isolated singularity at z = 0? Explain.

- (8) Let $U \subset \mathbb{C}$ be an open set and $f: U \to \mathbb{C}$ a complex differentiable function. Let $\alpha \in \mathbb{C}$ be a complex number. If f has a pole at α what kind of singularity does $\frac{1}{f}$ have at α ? If f has an essential singularity at α what kind of singularity does $\frac{1}{f}$ have at α ?
- (9) (Optional) Compute the integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 4} \, dx.$$

[Hint: Consider $\int_{C_R} \frac{e^{iz}}{z^4+4} dz$ where C_R is the contour described in Q6.]