Math 421 Homework 8

Paul Hacking

November 22, 2015
(1) Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ a complex differentiable function. We say that f has an isolated singularity at a point $\alpha \in \mathbb{C}$ if $\alpha \notin U$ and there is an $r>0$ such that, writing

$$
D=\{z \in \mathbb{C}| | z-\alpha \mid<r\}
$$

for the open disc with center α and radius r, we have $D \backslash\{\alpha\} \subset U$.
In this case $f(z)$ has a Laurent series expansion about $z=\alpha$

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-\alpha)^{n} \quad \text { for } z \in D \backslash\{\alpha\}
$$

and the singularity is either a removable singularity (if $a_{n}=0$ for all $n<0$), a pole of order $m>0$ (if $a_{-m} \neq 0$ and $a_{n}=0$ for all $n<-m$), or an essential singularity (if $a_{n} \neq 0$ for infinitely many $n<0$).

The coefficient a_{-1} is called the residue of $f(z)$ at $z=\alpha$ and denoted $\operatorname{Res}_{z=\alpha} f(z)$. The residue is important because it can be used to compute contour integrals (Cauchy's residue theorem). In particular

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=\alpha} f(z)
$$

for C a sufficiently small simple closed curve around α, oriented counterclockwise.

For each of the following functions $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$, (i) compute the Laurent series expansion $f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ of $f(z)$ about $z=0$; (ii) classify the singularity as a removable singularity, a pole of order m for some positive integer m (to be determined), or an essential singularity; and (iii) determine the residue $\operatorname{Res}_{z=0} f(z)$ of $f(z)$ at $z=0$.
(a) $\frac{e^{z}}{z^{4}}$
(b) $\frac{\sin z-z}{z^{3}}$
(c) $\frac{1-\cos 2 z}{z^{5}}$
(d) $\frac{1}{z^{3}(z-1)}$
(e) $\sin \left(\frac{1}{z}\right)$.
[Hint: In each case, use the known power series expansions of $e^{z}, \sin z$, $\cos z$, and $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ to determine the Laurent series expansion of $f(z)$.]
(2) For each of the following functions $f(z)$, (i) determine the singularities of f (the points $\alpha \in \mathbb{C}$ where f is not complex differentiable) and (ii) compute the residue at each isolated singularity.
(a) $\frac{z}{z^{2}+1}$.
(b) $\frac{e^{z}}{z^{2}-4 z+3}$.
(c) $\frac{\log (z)}{z-e}$.
(d) $\frac{z^{3}+1}{(z-i)^{2}}$.
(e) $\frac{e^{3 z}}{(z-2)^{5}}$.
(f) $\frac{1}{z^{5}-4 z^{4}+4 z^{3}}$.
[Hint: If $f(z)=\frac{g(z)}{(z-\alpha)^{m}}$ where $\alpha \in \mathbb{C}, m$ is a positive integer, $g(z)$ is complex differentiable at α and $g(\alpha) \neq 0$, then f has a pole of order m at α, and $\operatorname{Res}_{z=\alpha} f(z)=g^{(m-1)}(\alpha) /(m-1)$!. In particular, if $m=1$ then $\operatorname{Res}_{z=\alpha} f(z)=g(\alpha)$, and if $m=2$ then $\operatorname{Res}_{z=\alpha} f(z)=g^{\prime}(\alpha)$.]
(3) (a) Let $f(z)=\tan (z)=\frac{\sin (z)}{\cos (z z)}$. Find the singularities of f and determine the residue at each singularity.
(b) Let C be the circle with center the origin and radius 2 , oriented counterclockwise. Compute the contour integral $\int_{C} \tan z d z$.
[Hint: (a) Let $\alpha \in \mathbb{C}$ be a complex number. Suppose $f(z)=a(z) / b(z)$ where a and b are complex differentiable at α and $a(\alpha) \neq 0$ and $b(\alpha)=$ $0, b^{\prime}(\alpha) \neq 0$. In class we showed using the power series expansions of a and b about $z=\alpha$ that (i) f has a simple pole (a pole of order $m=1$) at α and (ii) $\operatorname{Res}_{z=\alpha}=\frac{a(\alpha)}{b^{\prime}(\alpha)}$. (b) What is Cauchy's residue theorem?]
(4) Let C be the circle with center the origin and radius 1 , oriented counterclockwise. Compute the contour integral

$$
\int_{C} z^{3} e^{1 / z} d z
$$

(5) Let C be the circle with center the origin and radius 2 , oriented counterclockwise. Compute the contour integral

$$
\int_{C} \frac{z+1}{\left(z^{2}+1\right)\left(z^{2}+9\right)} d z
$$

(6) Let R be a positive real number. Let $C_{1, R}=[-R, R] \subset \mathbb{R} \subset \mathbb{C}$ and $C_{2, R}$ be the semicircle

$$
C_{2, R}=\{z=x+i y| | z \mid=R \text { and } y \geq 0\}
$$

Let C_{R} be the simple closed curve given by $C_{R}=C_{1, R}+C_{2, R}$, oriented counterclockwise. Let $f(z)=\frac{e^{i z}}{z^{2}+1}$.
(a) Assume $R>1$. Compute the contour integral $\int_{C_{R}} f(z) d z$.
(b) Show that $\int_{C_{2, R}} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$.
(c) Using parts (a) and (b) or otherwise, determine the integrals

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x
$$

and

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x^{2}+1} d x
$$

[Hints: (b) Find a bound $|f(z)| \leq M(R)$ for $z \in C_{R}$ using $\left|e^{u+i v}\right|=e^{u}$ for $u, v \in \mathbb{R}$. Deduce a bound $\left|\int_{C_{R}} f(z) d z\right| \leq B(R)$ and show that $B(R) \rightarrow 0$ as $R \rightarrow \infty$. (c) Relate the given real integrals to the complex integral $\int_{C_{1, R}} f(z) d z$ using $e^{i x}=\cos x+i \sin x$. Check your answer using the fact that $\sin x$ is an odd function.]
(7) (a) Does $\log (z)$ (the principal value of the complex logarithm) have an isolated singularity at $z=0$? Explain.
(b) Does

$$
f(z)=\frac{1}{e^{1 / z}-1}
$$

have an isolated singularity at $z=0$? Explain.
(8) Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ a complex differentiable function. Let $\alpha \in \mathbb{C}$ be a complex number. If f has a pole at α what kind of singularity does $\frac{1}{f}$ have at α ? If f has an essential singularity at α what kind of singularity does $\frac{1}{f}$ have at α ?
(9) (Optional) Compute the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{4}+4} d x
$$

[Hint: Consider $\int_{C_{R}} \frac{e^{i z}}{z^{4}+4} d z$ where C_{R} is the contour described in Q6.]

