# Math 421 Homework 7 

Paul Hacking

November 3, 2015
(1) Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ a complex differentiable function. Suppose that the circle $C$ with center the origin and radius 3 is contained in $U$ and the disc bounded by $C$ is also contained in $U$. Suppose that $|f(z)| \leq 5$ for any point $z$ on the circle $C$. Determine a bound $\left|f^{\prime}(0)\right| \leq M$ for $f^{\prime}(0)$ (where $M$ is a positive real number).
[Hint: What is the generalized Cauchy integral formula? (See your class notes or Section 51 of the textbook.)]
(2) Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ a complex differentiable function. Suppose that the circle $C$ with center the origin and radius 5 is contained in $U$ and the disc bounded by $C$ is also contained in $U$. Suppose that $|f(z)| \leq 7$ for any point $z$ on the circle $C$. Determine a bound $\left|f^{(3)}(2 i)\right| \leq M$ for $f^{(3)}(2 i)$ (the third complex derivative of $f$ evaluated at $z=2 i)$.
(3) Let $U \subset \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ a complex differentiable function. The generalized Cauchy integral formula shows that $f$ has complex derivatives of all orders. That is, $f$ can be differentiated (in the complex sense) as many times as we like. In this question, we will study examples showing that this does not work for real differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ x^{2} & \text { if } x \geq 0\end{cases}
$$

Show carefully that $f$ is differentiable.
(b) Show that the derivative $f^{\prime}$ is not differentiable. In other words, $f$ is not twice differentiable.
(c) (Optional) Let $n$ be a positive integer. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f$ can be differentiated $n$ times but not $n+1$ times.
[Hint: (a) $f$ is differentiable at any point $a \in \mathbb{R}$ such that $a \neq 0$ because 0 and $x^{2}$ are differentiable. So we only need to check differentiability at the point $a=0$. This can be done using the definition of the derivative as a limit: compute the two "one-sided limits" where $h \rightarrow 0$ from the left or the right and check that they are equal (then the (two-sided) limit exists and is equal to the one-sided limits).]
(4) Let $U \subset \mathbb{C}=\mathbb{R}^{2}$ be an open set and $f: U \rightarrow \mathbb{C}$ a complex differentiable function. Write $f=u+i v$ where $u: U \rightarrow \mathbb{R}$ and $v: U \rightarrow \mathbb{R}$ are real differentiable functions. Recall the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

and the expression

$$
f^{\prime}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
$$

of the complex derivative of $f$ in terms of the partial derivatives of $u$ and $v$.

The generalized Cauchy integral formula shows that if $f$ is complex differentiable then $f^{\prime}$ complex differentiable. Use this fact, the CauchyRiemann equations, and the symmetry of mixed partial derivatives

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}, \quad \frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}
$$

to write down a set of equations relating the second partial derivatives of $u$ and $v$ with respect to $x$ and $y$.
[Hint: You should find that the $8=2 \times 4$ second partial derivatives of $u$ and $v$ with respect to $x$ and $y$ can be split into two sets of 4 so that the partial derivatives in each set agree up to sign.]
(5) Consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(\alpha)=\int_{0}^{2 \pi} \cos (\alpha x) d x
$$

(a) Compute the derivative $f^{\prime}(\alpha)$ for $\alpha \neq 0$ in two ways:
i. By evaluating the integral as an explicit function of $\alpha$ and differentiating with respect to $\alpha$.
ii. By "differentiating under the integral sign" (so that $f^{\prime}(\alpha)$ is expressed as an integral).
(b) Check your two answers in part (a) agree by evaluating the integral found in (a)(ii) using integration by parts.
[Hint: In class we used differentiation under the integral sign to deduce the generalized Cauchy integral formula

$$
f^{(n)}(\alpha)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{(z-\alpha)^{n+1}} d z
$$

from the Cauchy integral formula

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-\alpha} d z
$$

In this question we are studying differentiation under the integral sign in the real case: if $g=g(x, \alpha)$ is a continuous function of two real variables $x$ and $\alpha$ such that the partial derivative $\frac{\partial g}{\partial \alpha}$ is also continuous, then

$$
\frac{d}{d \alpha}\left(\int_{a}^{b} g d x\right)=\int_{a}^{b} \frac{\partial g}{\partial \alpha} d x
$$

.]
(6) Consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(\alpha)=\int_{1}^{e} x^{\alpha} d x
$$

(a) Compute the derivative $f^{\prime}(\alpha)$ for $\alpha \neq-1$ in two ways:
i. By evaluating the integral as an explicit function of $\alpha$ and differentiating with respect to $\alpha$.
ii. By "differentiating under the integral sign" (so that $f^{\prime}(\alpha)$ is expressed as an integral).
(b) Check your two answers in part (a) agree by evaluating the integral found in (a)(ii) using integration by parts.
[Hint: To differentiate $x^{\alpha}$ with respect to $\alpha$, first write $x^{\alpha}$ as $e^{\alpha \log x}$.]
(7) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complex differentiable function. Write $f=u+i v$ where $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are real-valued functions. Suppose that there is a real number $M$ such that $u(x, y) \leq M$ for all $x$ and $y$. Prove that $f$ is constant.
[Hint: What is Liouville's theorem? Consider the function $g(z)=e^{f(z)}$.]
(8) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complex differentiable function. Suppose that there are positive real numbers $M$ and $r$ such that if $|z| \geq r$ then $|f(z)| \leq M|z|$.
(a) Use the generalized Cauchy integral formula to prove that the second complex derivative $f^{\prime \prime}(z)$ is identically equal to zero, that is, $f^{\prime \prime}(\alpha)=0$ for all $\alpha \in \mathbb{C}$.
(b) Use part (a) to give an algebraic expression for $f(z)$ (involving some arbitrary constants).
(c) (Optional) Suppose more generally that $f: \mathbb{C} \rightarrow \mathbb{C}$ is a complex differentiable function and there are positive real numbers $M$ and $r$ and a positive integer $n$ such that if $|z| \geq r$ then $|f(z)| \leq M|z|^{n}$. Determine an algebraic expression for $f(z)$.
[Hint: Generalize the proof of Liouville's theorem.]

