Math 421 Homework 5

Paul Hacking

October 27, 2015
(1) Let C be a curve in the plane $\mathbb{C}=\mathbb{R}^{2}$ and $z:[a, b] \rightarrow \mathbb{C}$ a parametrization of C. That is, $z(t)=x(t)+i y(t)$ where $x(t)$ and $y(t)$ are continuously differentiable functions of t, the range $z([a, b])$ of z equals C, and z is one-to-one (if $t_{1} \neq t_{2}$ then $z\left(t_{1}\right) \neq z\left(t_{2}\right)$). Recall that the length of C can be computed using the formula

$$
\operatorname{length}(C)=\int_{a}^{b}\left|z^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

In each of the following cases, write down a parametrization of the curve and use it to compute the length of the curve.
(a) C is the circle with center the origin and radius R.
(b) C is the arc of the curve given by the equation $y=x^{3 / 2}$ between the points $(1,1)$ and $(4,8)$.
(2) Recall that if z and w are complex numbers then $|z+w| \leq|z|+|w|$ ("the triangle inequality"). Show that

$$
|z-w| \geq||z|-|w|| .
$$

Here $|z|$ and $|w|$ denote the lengths of the complex numbers z and w, and $||z|-|w||$ denotes the absolute value of the real number $|z|-|w|$. [Hint: The new inequality is given by two instances of the triangle inequality.]
(3) Let $U \subset \mathbb{C}$ be an open subset and $f: U \rightarrow \mathbb{C}$ a continuous function. Let C be an oriented curve in U. Suppose that M is a positive real
number such that $|f(z)| \leq M$ for all $z \in C$. In class we showed that the contour integral $\int_{C} f(z) d z$ satisfies the following inequality

$$
\left|\int_{C} f(z) d z\right| \leq M \cdot \operatorname{length}(C)
$$

(a) Let

$$
f(z)=\frac{z^{2}+4}{z^{4}+3 i z}
$$

and let C be the circle with center the origin and radius R. Show that

$$
|f(z)| \leq \frac{R^{2}+4}{R^{4}-3 R} \text { for all } z \in C
$$

if R is sufficiently large.
(b) Use part (a) to write down an inequality $\left|\int_{C} f(z) d z\right| \leq B(R)$ for R sufficiently large, where $B(R)$ is a function of R (to be determined).
(c) Use the inequality from part (b) to show that $\int_{C} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$.
[Hint for part (a): Use the inequalities $|z+w| \leq|z|+|w|$ and $|z-w| \geq$ $||z|-|w||$ from Q2 and the equalities $|z w|=|z| \cdot|w|$ and $|z / w|=|z| /|w|$.
(4) Recall the statement of Green's theorem from 233: Let $U \subset \mathbb{R}^{2}$ be an open subset of \mathbb{R}^{2}, and $p: U \rightarrow \mathbb{R}$ and $q: U \rightarrow \mathbb{R}$ two functions with continuous partial derivatives $\frac{\partial p}{\partial x}, \frac{\partial p}{\partial y}, \frac{\partial q}{\partial x}$, and $\frac{\partial q}{\partial y}$. Let C be a simple closed curve in U, oriented counterclockwise, and R the region bounded by C. Assume R is contained in U. Then

$$
\int_{C} p d x+q d y=\int_{R}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d x d y
$$

(Here a closed curve is a curve whose end points are the same, so that the curve "closes up". And we say a closed curve is simple if there are no self-intersections.)
Use Green's theorem to compute the following integrals.
(a) $\int_{C} x d y$ where C is the circle with center the origin and radius 1 , oriented counterclockwise.
(b) $\int_{C} 2 x y d x+\left(x^{2}-y^{2}\right) d y$, where C is any simple closed curve.
(c) $\int_{C} e^{x} \sin y d x+e^{x} \cos y d y$, where C is any simple closed curve.
(5) Let $f(z)=e^{\left(z^{2}\right)} \cos (2 z) \sin (3 z)$. Let C be a simple closed curve in $\mathbb{C}=\mathbb{R}^{2}$. What can you say about the integral $\int_{C} f(z) d z$? Justify your answer carefully.
[Hint: What is Cauchy's theorem (also known as the Cauchy-Goursat theorem)?]
(6) Let

$$
f(z)=\frac{3 z}{z^{2}+4 z+13}
$$

(a) What is the domain $U \subset \mathbb{C}$ where f is defined?
(b) Compute the contour integral $\int_{C} f(z) d z$ where C is the circle with center the origin and radius 3. Justify your answer carefully.
(7) Let

$$
f(z)=\frac{1}{z^{2}-i z}
$$

Let C be a simple closed curve in \mathbb{C}, oriented counterclockwise, and contained in the domain of f.
(a) Use partial fractions to write $f(z)$ as a sum of two simpler rational functions.
(b) Using part (a) or otherwise, show that $\int_{C} f(z) d z=0$ if 0 and i are either both inside C or both outside $C ; \int_{C} f(z) d z=-2 \pi$ if 0 is inside C and i is outside C; and $\int_{C} f(z) d z=2 \pi$ if i is inside C and 0 is outside C.
[Hint: The following result was proved in class. Let $\alpha \in \mathbb{C}$ be a complex number. Let C be a simple closed curve in \mathbb{C} oriented counterclockwise and not passing through α. Then $\int_{C} \frac{1}{z-\alpha} d z=2 \pi i$ if α is inside C and $\int_{C} \frac{1}{z-\alpha} d z=0$ if α is outside C.]
(8) Prove that the function

$$
f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, \quad f(z)=\frac{1}{z}
$$

does not have a complex anti-derivative. That is, there is no function $F: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ such that F is complex differentiable and $F^{\prime}=f$.
[Hint: Recall that if $U \subset \mathbb{C}$ is an open subset, $f: U \rightarrow \mathbb{C}$ is a continuous function, $F: U \rightarrow \mathbb{C}$ is a complex antiderivative of f, and C is a curve in U with end points α and β (oriented from α to β), then

$$
\int_{C} f(z) d z=F(\beta)-F(\alpha) .
$$

In particular if $\alpha=\beta$ then $\int_{C} f(z) d z=0$.]

