Math 421 Homework 4

Paul Hacking

October 15, 2015
(1) For each of the following functions f, determine whether f is complex differentiable and, if so, give a formula for its complex derivative.
(a) $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=(x+2 y)+i(3 x+4 y)$.
(b) $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=(5 x+7 y)+i(-7 x+5 y)$.
(c) $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=\left(2 x^{2}-6 x y-2 y^{2}\right)+i\left(3 x^{2}+4 x y-3 y^{2}\right)$.
(d) $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=e^{y} \sin x+i e^{y} \cos x$.
(e) $U=\{z=x+i y \in \mathbb{C} \mid x>0\}, f: U \rightarrow \mathbb{C}$,

$$
f(x+i y)=\log \sqrt{x^{2}+y^{2}}+i \tan ^{-1}(y / x) .
$$

[Hint: If $f=u+i v$ is complex differentiable then the Cauchy-Riemann equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ are satisfied. Conversely, if the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ exist and are continuous, and the CauchyRiemann equations are satisfied, then f is complex differentiable. If $f=u+i v$ is complex differentiable, then its complex derivative is given by $f^{\prime}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$.]
(2) Compute the complex derivatives of the following functions f.
(a) $f(z)=(3+2 i) z^{7}+4 i z^{2}+(1+5 i)$.
(b) $f(z)=\frac{z+3}{z^{2}+i}$.
(c) $f(z)=e^{(1+i) z}$.
(d) $f(z)=z \sin (2 i z)$.
(e) $f(z)=\log \left(i z^{2}+3\right)$.
(3) Let $a, b, c, d \in \mathbb{C}$ be complex numbers such that $a d-b c \neq 0$. Consider the function

$$
f(z)=\frac{a z+b}{c z+d}
$$

Assuming $c \neq 0$, the domain U of f is given by $U=\mathbb{C} \backslash\{-d / c\}$. Compute the complex derivative f^{\prime} of f and show that $f^{\prime}(z) \neq 0$ for all $z \in U$.
(4) Let $\alpha \in \mathbb{C}$ be a complex number, and consider the multivalued function

$$
f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, \quad f(z)=z^{\alpha} .
$$

Show carefully that $f^{\prime}(z)=\alpha z^{\alpha-1}$.
[Hint: Recall that by definition $z^{\alpha}=e^{\alpha \log z}$ where $\log z$ is the multivalued complex logarithm. The complex derivative of $\log z$ is the singlevalued function $\frac{1}{z}$. Now use the chain rule.]
(5) Let C be the line segment between the points $1+i$ and $3+2 i$ in $\mathbb{C}=\mathbb{R}^{2}$, with the orientation given by the direction from $1+i$ to $3+2 i$.
(a) Write down a parametrization $z:[a, b] \rightarrow \mathbb{C}$ of C for some $a, b \in \mathbb{R}$, $a<b$.
(b) Using part (a) compute from first principles the contour integral $\int_{C} z d z$. (Do not use an antiderivative.)
(c) Check your answer to part (b) by computing the contour integral using an antiderivative.
(6) Let C be the circle with center the origin and radius 1 in $\mathbb{C}=\mathbb{R}^{2}$, with the counterclockwise orientation.
(a) Write down a parametrization $z:[a, b] \rightarrow \mathbb{C}$ of C for some $a, b \in \mathbb{R}$, $a<b$.
(b) Using part (a) compute from first principles the contour integral $\int_{C} z d z$. (Do not use an antiderivative.)
(c) Check your answer to part (b) by computing the contour integral using an antiderivative.
(7) Let C be a smooth curve in the plane with endpoints 1 and $2 i$, with the orientation given by the direction from 1 to $2 i$. Compute the contour integral

$$
\int_{C}\left(z^{3}+2 i z+3\right) d z
$$

(8) Let C be the circle with center the origin and radius R, with the counterclockwise orientation. In class we showed that

$$
\int_{C} \frac{1}{z} d z=2 \pi i .
$$

Show that for any integer $n \neq-1$, we have

$$
\int_{C} z^{n} d z=0
$$

[Hint: What is an antiderivative of z^{n} ? Why is the case $n=-1$ special?]

