Math 421 Homework 2

Paul Hacking

September 22, 2015
(1) Find all complex solutions of the equation $z^{3}=27 i$. Draw a picture of the solutions in the plane $\mathbb{C}=\mathbb{R}^{2}$.
(2) Repeat Q1 for the equation $z^{4}=(-8+8 \sqrt{3} i)$.
(3) Recall the quadratic formula

$$
a z^{2}+b z+c=0 \Rightarrow z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

On the last homework, we used this formula to find all complex solutions of $a z^{2}+b z+c=0$ when a, b, c are real.
Now observe that the same formula can be used to find all complex solutions when a, b, c are complex - provided we can compute the two square roots of the complex number $b^{2}-4 a c$. Use this observation to find all complex solutions of the equation

$$
z^{2}+(2+4 i) z+(-3+2 i)=0
$$

(4) Let $z=a+b i, a, b \in \mathbb{R}$. Recall that we can compute the two complex square roots of z as follows: First write z in polar coordinates

$$
z=r(\cos \theta+i \sin \theta)
$$

Then the two square roots are

$$
\pm \sqrt{r}(\cos (\theta / 2)+i \sin (\theta / 2))
$$

(a) Suppose for simplicity that $b \geq 0$, so that $0 \leq \theta \leq \pi$ and $\cos (\theta / 2) \geq 0, \sin (\theta / 2) \geq 0$. Use the formulae

$$
\cos (\theta)=2(\cos (\theta / 2))^{2}-1=1-2(\sin (\theta / 2))^{2}
$$

to write an explicit formula in terms of a and b for the two square roots of $z=a+b i$. (Simplify your formula as much as possible.)
(b) Check your formula is correct by squaring and simplifying.
(c) Use your formula to compute the two complex square roots of $z=5+12 i$.
(5) Draw a precise picture of the image $f(R)$ of the region $R \subset \mathbb{C}$ under the complex mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ in each of the following cases.
(a) $R=\{x+i y \mid 0 \leq x \leq 1$ and $0 \leq y \leq 1\}, f(z)=(1+i) z$.
(b) $R=\{x+i y \mid x \geq 0$ and $y \geq 0\}, f(z)=z^{2}$.
(c) $R=\left\{x+i y \mid-x \leq y \leq 0\right.$ and $\left.\sqrt{x^{2}+y^{2}} \leq 2\right\}, f(z)=z^{3}$.
(d) $R=\{x+i y \mid \pi / 2 \leq y \leq 3 \pi / 2\}, f(z)=e^{z}$.
(e) $R=\left\{x+i y \mid 0 \leq x \leq y\right.$ and $\left.1 \leq \sqrt{x^{2}+y^{2}} \leq e\right\}, f(z)=\log (z)$. Here $\log (z)$ is the principal value of \log which satisfies $\log z=$ $u+i v, u, v \in \mathbb{R},-\pi<v \leq \pi$.
(f) $R=\left\{x+i y \mid x \geq 0, y \geq 0\right.$, and $\left.1 \leq \sqrt{x^{2}+y^{2}} \leq 2\right\}, f(z)=1 / z$.
(6) Find all complex solutions of the equation $\sin (z)=0$. Justify your answer carefully.
(7) Show that $\cos (z+\pi)=-\cos (z)$ for all complex numbers z.
(8) Consider the complex mapping $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, f(z)=z+\frac{1}{z}$.
(a) For each $\alpha \in \mathbb{C}$ determine the number of solutions of the equation $f(z)=\alpha$. Deduce in particular that the range of f equals \mathbb{C}.
[Hint: Convert the equation into a quadratic equation and solve using the quadratic formula.]
(b) Now consider the mapping $g: \mathbb{C} \rightarrow \mathbb{C}, g(z)=\cos z$. Using part (a) or otherwise, show that the range of g equals \mathbb{C}.

