Math 421 Homework 1

Paul Hacking

September 22, 2015

- (1) Compute the following products of complex numbers. Express your answer in the form x + yi where x and y are real numbers.
 - (a) (2+i)(5+3i)
 - (b) (3-4i)(1+2i)
 - (c) (7+5i)(3+2i)
 - (d) (a+bi)(a-bi) where a and b are real numbers.
- (2) Compute the following quotients of complex numbers. Express your answer in the form x + yi where x and y are real numbers.
 - (a) $\frac{3+4i}{2+i}$
 - (b) $\frac{7+i}{2+5i}$

 - (c) $\frac{1+i}{1-i}$
- (3) Express the following complex numbers z = x + iy in polar coordinates $z = r(\cos \theta + i \sin \theta)$. For parts (a) to (d) give a precise value for θ using known special values of sine and cosine $(\sin(\pi/6) = 1/2)$, $\sin(\pi/4) = 1/\sqrt{2}, \ \sin(\pi/3) = \sqrt{3}/2, \ \cos(\pi/6) = \sqrt{3}/2, \ \cos(\pi/4) =$ $1/\sqrt{2}$, $\cos(\pi/3) = 1/2$). For part (e) use the inverse tangent function $\tan^{-1} \colon \mathbb{R} \to (-\pi/2, \pi/2).$
 - (a) z = 1 + i.
 - (b) $z = \sqrt{3} + i$.
 - (c) z = 1 i.
 - (d) $z = -\sqrt{3} + i$.

- (e) z = 3 + 4i.
- (4) Find all complex solutions of the equation f(z) = 0 for the each of the following polynomials f(z).
 - (a) $z^2 + 3z + 4$.
 - (b) $z^2 4z + 13$.
 - (c) $z^3 + 6z^2 + 10z$.
 - (d) $z^3 4z^2 + 6z 4$.

[Hints: A quadratic equation $az^2 + bz + c = 0$ with real coefficients a, b, c can be solved using the quadratic formula

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

noting that if the quantity $d := b^2 - 4ac$ is negative, then $\sqrt{d} = i\sqrt{|d|}$. (Here we write |x| for the absolute value of a real number x.) To solve the cubic equations, first find a real solution α by inspection, then divide f(z) by $(z - \alpha)$ to obtain a quadratic polynomial g(z), and solve the quadratic equation g(z) = 0 as before. Then the solutions of f(z) = 0 are given by $z = \alpha$ and the solutions of g(z) = 0.]

(5) If a quadratic equation $z^2 + bz + c = 0$ with real coefficients b and c has two complex solutions $A \pm Bi$ (where A and B are real numbers), show that b = -2A and $c = A^2 + B^2$.

[Hint: If $z^2 + bz + c = 0$ has solutions α_1 and α_2 , then $z^2 + bz + c = (z - \alpha_1)(z - \alpha_2)$. Now expand the product and compare coefficients.]

(6) Recall the *binomial theorem*: for n a positive integer and a and b real or complex numbers, we have

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \dots + nab^{n-1} + b^{n}.$$

Here

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots1}$$

is the number of ways of choosing a subset of k objects from a set of n objects. The notation $\binom{n}{k}$ is pronounced "n choose k".

- (a) Let z = x + iy be a complex number and n a positive integer. Use the binomial theorem to express zⁿ in the form A + Bi where A and B are real numbers expressed as functions of x and y.
 [Hint: Do n = 2 and n = 3 first to get the idea. Then do the general case using the observation that, for k an integer, i^k = (-1)^l if k = 2l is even and i^k = (-1)^l · i if k = 2l + 1 is odd.]
- (b) Now write z in polar coordinates,

$$z = r(\cos\theta + i\sin\theta).$$

Express z^n in polar coordinates $z^n = s(\cos \phi + i \sin \phi)$, where s and ϕ are expressed as functions of r and θ .

Comparing with your answer to part (a) explains why it is much easier to solve the equation $z^n = c$ for a complex number c using polar coordinates r, θ instead of Cartesian coordinates x, y.

(7) Compute the complex number $(1+i)^{2015}$. Simplify your answer as much as possible.

[Hint: Use polar coordinates as in Q6(b).]

(8) In class we showed that all complex solutions to the equation $z^n = 1$ (where n is a positive integer) are given by

$$z = \cos(2\pi k/n) + i\sin(2\pi k/n)$$

for $k = 0, 1, 2, \ldots, n - 1$. Equivalently,

$$z = 1, \zeta, \zeta^2, \dots, \zeta^{n-1}$$

where $\zeta = \cos(2\pi/n) + i \sin(2\pi/n)$. These complex numbers are called the "*n*th roots of unity" or "*n*th roots of 1". The symbol ζ is the greek letter zeta.

It follows that we have the factorization

$$z^{n} - 1 = (z - 1)(z - \zeta)(z - \zeta^{2}) \cdots (z - \zeta^{n-1})$$
 (†)

of the polynomial $z^n - 1$ into linear factors corresponding to the solutions of the equation $z^n - 1 = 0$.

- (a) Compute the factorization (†) explicitly from first principles in the cases n = 2, 3, 4. [Hints: n = 2 is easy. For n = 3, first find a real solution α of $z^3 - 1 = 0$. Then divide $z^3 - 1$ by $z - \alpha$, and factor the resulting quadratic polynomial. For n = 4, first factor $z^4 - 1$ into two quadratic polynomials using the "difference of two squares" identity $A^2 - B^2 = (A + B)(A - B)$ (note that $z^4 = (z^2)^2$). Then factor each of the quadratic polynomials.]
- (b) (Bonus question) Repeat part (a) for n = 6 and n = 8.
- (c) We can (partially) check equation (†) by comparing the coefficient of z^{n-1} on both sides.
 - i. First, explain why in the expansion of the product

$$(z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

(where $\alpha_1, \alpha_2, \ldots, \alpha_n$ and a_0, a_1, \ldots, a_n are complex numbers) we have $a_n = 1$ and $a_{n-1} = -(\alpha_1 + \alpha_2 + \cdots + \alpha_n)$. So, in particular, the coefficient of z^{n-1} on the right hand side of equation (†) equals $-(1 + \zeta + \zeta^2 + \cdots + \zeta^{n-1})$.

ii. Second, explain geometrically why we have

$$1 + \zeta + \zeta^2 + \dots + \zeta^{n-1} = 0$$

(Note that if z_1, \ldots, z_n are complex numbers, regarded as points in the plane \mathbb{R}^2 , then the average $(z_1 + z_2 + \cdots + z_n)/n$ is the center of mass of a collection of n particles of equal weight positioned at the points z_1, z_2, \ldots, z_n .)

(9) Consider the function

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = z^2.$$

- (a) Introduce notation w = f(z) = u + iv and z = x + iy, where u, v, x, y are real numbers. Express u and v as functions of x and y.
- (b) Consider the line L_1 in the *xy*-plane given by the equation x = 1. Find the equation of the image $f(L_1)$ in the *uv*-plane of the line L_1 under the transformation f. (Here as usual we are identifying \mathbb{C} with \mathbb{R}^2 via z = x + iy and w = u + iv).]

- (c) Repeat part (b) for the line L_2 in the *xy*-plane given by the equation y = 1.
- (d) Show that the two curves found in parts (b) and (c) meet at two points in the *uv*-plane, and at each point the curves are perpendicular. (Recall that the angle between two curves meeting at a point is defined to be the angle between the tangent lines to the curves at the point.)
- (e) Finally, explain why the image f(S) of the square S in the xyplane defined by

$$S = \{ (x, y) \mid -1 \le x \le 1 \text{ and } -1 \le y \le 1 \}$$

under the transformation f is the region in the *uv*-plane bounded by the curves $f(L_1)$ and $f(L_2)$.

[Hints: In parts (b) and (c), the image is a curve in the uv-plane given by an equation u = g(v) for some function g (to be determined). (d) The slope of the tangent line to u = g(v) at a point (u,v) = (a,b) is given 1/g'(b), where g'(b) is the derivative of g evaluated at b. (Here the slope is 1/g'(b) instead of g'(b) because the u-axis is horizontal and the v-axis is vertical.) And two lines are perpendicular if their slopes m_1, m_2 satisfy $m_1m_2 = -1$. (e) Note that f(z) = f(-z), and use the description of the transformation f in polar coordinates (as in Q6(b)). You can view a related picture at virtualmathmuseum.org/ConformalMaps/square.]