Math 421 Homework 1

Paul Hacking

September 22, 2015
(1) Compute the following products of complex numbers. Express your answer in the form $x+y i$ where x and y are real numbers.
(a) $(2+i)(5+3 i)$
(b) $(3-4 i)(1+2 i)$
(c) $(7+5 i)(3+2 i)$
(d) $(a+b i)(a-b i)$ where a and b are real numbers.
(2) Compute the following quotients of complex numbers. Express your answer in the form $x+y i$ where x and y are real numbers.
(a) $\frac{3+4 i}{2+i}$
(b) $\frac{7+i}{2+5 i}$
(c) $\frac{1+i}{1-i}$
(3) Express the following complex numbers $z=x+i y$ in polar coordinates $z=r(\cos \theta+i \sin \theta)$. For parts (a) to (d) give a precise value for θ using known special values of sine and $\operatorname{cosine}(\sin (\pi / 6)=1 / 2$, $\sin (\pi / 4)=1 / \sqrt{2}, \sin (\pi / 3)=\sqrt{3} / 2, \cos (\pi / 6)=\sqrt{3} / 2, \cos (\pi / 4)=$ $1 / \sqrt{2}, \cos (\pi / 3)=1 / 2)$. For part (e) use the inverse tangent function $\tan ^{-1}: \mathbb{R} \rightarrow(-\pi / 2, \pi / 2)$.
(a) $z=1+i$.
(b) $z=\sqrt{3}+i$.
(c) $z=1-i$.
(d) $z=-\sqrt{3}+i$.
(e) $z=3+4 i$.
(4) Find all complex solutions of the equation $f(z)=0$ for the each of the following polynomials $f(z)$.
(a) $z^{2}+3 z+4$.
(b) $z^{2}-4 z+13$.
(c) $z^{3}+6 z^{2}+10 z$.
(d) $z^{3}-4 z^{2}+6 z-4$.
[Hints: A quadratic equation $a z^{2}+b z+c=0$ with real coefficients a, b, c can be solved using the quadratic formula

$$
z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

noting that if the quantity $d:=b^{2}-4 a c$ is negative, then $\sqrt{d}=i \sqrt{|d|}$. (Here we write $|x|$ for the absolute value of a real number x.) To solve the cubic equations, first find a real solution α by inspection, then divide $f(z)$ by $(z-\alpha)$ to obtain a quadratic polynomial $g(z)$, and solve the quadratic equation $g(z)=0$ as before. Then the solutions of $f(z)=0$ are given by $z=\alpha$ and the solutions of $g(z)=0$.]
(5) If a quadratic equation $z^{2}+b z+c=0$ with real coefficients b and c has two complex solutions $A \pm B i$ (where A and B are real numbers), show that $b=-2 A$ and $c=A^{2}+B^{2}$.
[Hint: If $z^{2}+b z+c=0$ has solutions α_{1} and α_{2}, then $z^{2}+b z+c=$ $\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)$. Now expand the product and compare coefficients.]
(6) Recall the binomial theorem: for n a positive integer and a and b real or complex numbers, we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2} a^{n-2} b^{2}+\cdots+n a b^{n-1}+b^{n} .
$$

Here

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k(k-1)(k-2) \cdots 1}
$$

is the number of ways of choosing a subset of k objects from a set of n objects. The notation $\binom{n}{k}$ is pronounced " n choose k ".
(a) Let $z=x+i y$ be a complex number and n a positive integer. Use the binomial theorem to express z^{n} in the form $A+B i$ where A and B are real numbers expressed as functions of x and y.
[Hint: Do $n=2$ and $n=3$ first to get the idea. Then do the general case using the observation that, for k an integer, $i^{k}=(-1)^{l}$ if $k=2 l$ is even and $i^{k}=(-1)^{l} \cdot i$ if $k=2 l+1$ is odd.]
(b) Now write z in polar coordinates,

$$
z=r(\cos \theta+i \sin \theta)
$$

Express z^{n} in polar coordinates $z^{n}=s(\cos \phi+i \sin \phi)$, where s and ϕ are expressed as functions of r and θ.
Comparing with your answer to part (a) explains why it is much easier to solve the equation $z^{n}=c$ for a complex number c using polar coordinates r, θ instead of Cartesian coordinates x, y.
(7) Compute the complex number $(1+i)^{2015}$. Simplify your answer as much as possible.
[Hint: Use polar coordinates as in Q6(b).]
(8) In class we showed that all complex solutions to the equation $z^{n}=1$ (where n is a positive integer) are given by

$$
z=\cos (2 \pi k / n)+i \sin (2 \pi k / n)
$$

for $k=0,1,2, \ldots, n-1$. Equivalently,

$$
z=1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}
$$

where $\zeta=\cos (2 \pi / n)+i \sin (2 \pi / n)$. These complex numbers are called the " nth roots of unity" or " nth roots of 1 ". The symbol ζ is the greek letter zeta.

It follows that we have the factorization

$$
z^{n}-1=(z-1)(z-\zeta)\left(z-\zeta^{2}\right) \cdots\left(z-\zeta^{n-1}\right)
$$

of the polynomial $z^{n}-1$ into linear factors corresponding to the solutions of the equation $z^{n}-1=0$.
(a) Compute the factorization (\dagger) explicitly from first principles in the cases $n=2,3,4$. [Hints: $n=2$ is easy. For $n=3$, first find a real solution α of $z^{3}-1=0$. Then divide $z^{3}-1$ by $z-\alpha$, and factor the resulting quadratic polynomial. For $n=4$, first factor $z^{4}-1$ into two quadratic polynomials using the "difference of two squares" identity $A^{2}-B^{2}=(A+B)(A-B)$ (note that $\left.z^{4}=\left(z^{2}\right)^{2}\right)$. Then factor each of the quadratic polynomials.]
(b) (Bonus question) Repeat part (a) for $n=6$ and $n=8$.
(c) We can (partially) check equation (\dagger) by comparing the coefficient of z^{n-1} on both sides.
i. First, explain why in the expansion of the product

$$
\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

(where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and $a_{0}, a_{1}, \ldots, a_{n}$ are complex numbers) we have $a_{n}=1$ and $a_{n-1}=-\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}\right)$. So, in particular, the coefficient of z^{n-1} on the right hand side of equation (\dagger) equals $-\left(1+\zeta+\zeta^{2}+\cdots+\zeta^{n-1}\right)$.
ii. Second, explain geometrically why we have

$$
1+\zeta+\zeta^{2}+\cdots+\zeta^{n-1}=0
$$

(Note that if z_{1}, \ldots, z_{n} are complex numbers, regarded as points in the plane \mathbb{R}^{2}, then the average $\left(z_{1}+z_{2}+\cdots+z_{n}\right) / n$ is the center of mass of a collection of n particles of equal weight positioned at the points $z_{1}, z_{2}, \ldots, z_{n}$.)
(9) Consider the function

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=z^{2}
$$

(a) Introduce notation $w=f(z)=u+i v$ and $z=x+i y$, where u, v, x, y are real numbers. Express u and v as functions of x and y.
(b) Consider the line L_{1} in the $x y$-plane given by the equation $x=1$. Find the equation of the image $f\left(L_{1}\right)$ in the $u v$-plane of the line L_{1} under the transformation f. (Here as usual we are identifying \mathbb{C} with \mathbb{R}^{2} via $z=x+i y$ and $\left.w=u+i v\right)$.]
(c) Repeat part (b) for the line L_{2} in the $x y$-plane given by the equation $y=1$.
(d) Show that the two curves found in parts (b) and (c) meet at two points in the $u v$-plane, and at each point the curves are perpendicular. (Recall that the angle between two curves meeting at a point is defined to be the angle between the tangent lines to the curves at the point.)
(e) Finally, explain why the image $f(S)$ of the square S in the $x y$ plane defined by

$$
S=\{(x, y) \mid-1 \leq x \leq 1 \text { and }-1 \leq y \leq 1\}
$$

under the transformation f is the region in the $u v$-plane bounded by the curves $f\left(L_{1}\right)$ and $f\left(L_{2}\right)$.
[Hints: In parts (b) and (c), the image is a curve in the $u v$-plane given by an equation $u=g(v)$ for some function g (to be determined). (d) The slope of the tangent line to $u=g(v)$ at a point $(u, v)=(a, b)$ is given $1 / g^{\prime}(b)$, where $g^{\prime}(b)$ is the derivative of g evaluated at b. (Here the slope is $1 / g^{\prime}(b)$ instead of $g^{\prime}(b)$ because the u-axis is horizontal and the v-axis is vertical.) And two lines are perpendicular if their slopes m_{1}, m_{2} satisfy $m_{1} m_{2}=-1$. (e) Note that $f(z)=f(-z)$, and use the description of the transformation f in polar coordinates (as in Q6(b)). You can view a related picture at virtualmathmuseum.org/ConformalMaps/square.]

