Math 421 Final exam review questions

Paul Hacking

December 16, 2015
(1) Find all complex solutions of the following equations.
(a) $e^{z}+1-i=0$.
(b) $z^{3}+8 i=0$.
(c) $z+\frac{1}{z}=i$.
(2) In each of the following cases, determine the image $f(R)$ of the region R under the function f.
(a) $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=e^{z}$, and

$$
R=\{z=x+i y \mid 0<x<1 \text { and } 0<y<\pi / 4\} .
$$

(b) $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\log z$, and

$$
R=\{z=x+i y| | z \mid>1 \text { and } y>0\} .
$$

(c) $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=z^{2}$, and

$$
R=\{z=x+i y| | z \mid<2, x<0 \text { and } x+y>0\} .
$$

(d) $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, f(z)=1 / z$, and

$$
R=\{z=x+i y| | z \mid<1, x>0 \text { and } y>0\} .
$$

(3) Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by complex conjugation $f(z)=$ \bar{z}, that is, $f(x+i y)=x-i y$.
(a) Show that f is not complex differentiable.
(b) Compute the contour integral $\int_{C} f(z) d z$ where C is the boundary of the triangle with vertices 0,1 and i, oriented counterclockwise.
(4) Compute the following contour integrals
(a)

$$
\int_{C} z^{3}+3 z+5 d z
$$

where C is a curve with endpoints 1 and i, oriented from 1 to i.
(b)

$$
\int_{C} \cos \left(z^{2}\right) d z,
$$

where C is the circle with center the origin and radius 1 , oriented counterclockwise.
(c)

$$
\int_{C} \frac{1}{(z-i)^{3}} d z
$$

where C is the circle with center the origin and radius 2 , oriented counterclockwise.
(5) Does the function

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=e^{\left(z^{2}\right)} \sin \left(z^{3}\right)
$$

have an antiderivative? Justify your answer.
(6) Compute the power series expansion of the function

$$
f(z)=\frac{1}{z^{2}-5 z+6}
$$

about $z=0$. What is the radius of convergence of this power series?
(7) For each of the following functions $f(z)$, (i) compute the Laurent series expansion of the function about $z=0$, (ii) classify the singularity $z=0$ of the function as a removable singularity, a pole of order m for some positive integer m (to be determined), or an essential singularity, and (iii) compute the residue of $f(z)$ at $z=0$.
(a)

$$
\frac{\sin (z)}{z^{4}}
$$

(b)

$$
\frac{e^{z}-1-z}{z^{2}}
$$

(c)

$$
z \cos (1 / z)
$$

(d)

$$
\frac{1}{z^{4}(z+1)}
$$

(8) The power series expansion for $\tan z$ about $z=0$ is

$$
\tan z=\frac{\sin z}{\cos z}=z+\frac{1}{3} z^{3}+\frac{2}{15} z^{5}+\cdots
$$

(where \cdots denotes higher powers of z). Consider the function

$$
f(z)=\frac{(z+1) \tan z}{z^{5}}
$$

(a) Given the power series expansion for $\tan z$ above, what is $\tan ^{(5)}(0)$ (the 5th derivative of $\tan z$ evaluated at $z=0$)?
(b) Compute the first few terms of the Laurent series expansion for $f(z)$ about $z=0$.
(c) Classify the singularity of $f(z)$ at $z=0$ as a removable singularity, a pole of order m for some positive integer m, or an essential singularity. What is the residue of $f(z)$ at $z=0$?
(d) Determine the remaining singularities of $f(z)$ in the disc $D=$ $\{z||z|<2\}$, classify their types, and compute the residue at each singularity.
(9) Let C be the circle with center the origin and radius 2 , oriented counterclockwise. Compute the contour integral

$$
\int_{C} \frac{1}{z^{2}+2 z-3} d z
$$

(10) Let C be the circle with center the origin and radius 3, oriented counterclockwise. Compute the contour integral

$$
\int_{C} \frac{e^{z}}{z^{3}-2 z^{2}} d z
$$

(11) Let C be the circle with center the origin and radius 1 , oriented counterclockwise. Compute the contour integral

$$
\int_{C} \frac{\cos z}{e^{z}-1} d z
$$

(12) (a) What is the Laurent series expansion of $e^{1 / z}$ about $z=0$?
(b) Let C be the circle with center the origin and radius 1 , oriented counterclockwise. Compute the contour integral

$$
\int_{C}\left(\frac{1}{z^{2}}+z+z^{3}\right) e^{1 / z} d z
$$

(13) Let C be the circle with center the origin and radius 2 , oriented counterclockwise. Compute the contour integral

$$
\int_{C} \frac{\log (z+3)}{(z-1)^{n}} d z
$$

for any positive integer n.
(14) Compute the integral

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

(15) Compute the integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{4}+1\right)} d x
$$

(16) What does it mean to say a function $\phi(x, y)$ is harmonic? For each of the following functions ϕ, (i) check that the function ϕ is harmonic and (ii) find a harmonic conjugate ψ of ϕ (that is, a function ψ such that $f=\phi+i \psi$ is complex differentiable).
(a) $4 x y^{3}-4 x^{3} y$.
(b) $e^{-x} \sin y$.
(17) Does there exist a complex differentiable function $f=u+i v$ with real part $u(x, y)=x e^{y}$?
(18) Let $f=u+i v$ be complex differentiable function with real part u and imaginary part v. Show that the vectors $\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ and $\nabla v=$ $\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)$ are orthogonal at each point of the domain of f.
Now suppose two level curves $u=c$ and $v=d$ (where c and d are constants) intersect at a point p which is not a critical point of f. Explain why the curves are orthogonal at p.
(19) Give a precise geometric description of the transformation

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=(1+\sqrt{3} i) z
$$

(20) For each of the following pairs of open sets $U \subset \mathbb{C}$ and $V \subset \mathbb{C}$, find a complex differentiable function $g: U \rightarrow V$ such that g is one-to-one and onto.
(a)

$$
U=\{z=x+i y \mid 0<y<1\}
$$

and

$$
V=\{z=x+i y \mid x>0 \text { and } y>0\} .
$$

(b)

$$
U=\left\{z=r e^{i \theta} \mid r>0 \text { and } 0<\theta<\pi / 6\right\}
$$

and

$$
V=\{z=x+i y \mid y>0\}
$$

(c)

$$
U=\{z=x+i y \mid 0<x<y\}
$$

and

$$
V=\{z=x+i y \mid y>0\} .
$$

(d)

$$
U=\{z| | z-i \mid<2\}
$$

and

$$
V=\{z=x+i y \mid y>0\} .
$$

(e)

$$
U=\{z=x+i y| | z \mid<1 \text { and } x+y>1\}
$$

and

$$
V=\{z=x+i y \mid 0<y<x\} .
$$

(f)

$$
U=\{z=x+i y| | z \mid<1 \text { and } y>0\}
$$

and

$$
V=\{z=x+i y \mid y>0\} .
$$

