Math 421 Midterm 2, Wednesday 11/18/15, 7PM-8:30PM.
Instructions: Exam time is 90 mins. There are 6 questions for a total of 60 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely.

Q1. (10 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function given by $f(z)=\bar{z}$, that is, $f(x+i y)=x-i y$. Let C be the line segment in \mathbb{C} connecting 1 to i, oriented from 1 to i.
(a) (3 points) Show that f is not complex differentiable.
(b) (3 points) Write down a parametrization $z(t)$ of C.
(c) (4 points) Compute the contour integral $\int_{C} f(z) d z$.

Q2. (10 points) Compute the following contour integrals. Justify your answers carefully.
(a) (3 points)

$$
\int_{C}\left(z^{3}+i z+3\right) d z
$$

where C is a smooth curve with endpoints 0 and $2 i$, oriented from 0 to $2 i$.
(b) (3 points)

$$
\int_{C} e^{3 z} \cos \left(z^{2}\right) d z
$$

where C is the circle with center the origin and radius 2 , oriented counterclockwise.
(c) (4 points)

$$
\int_{C} \frac{\log (z)}{(z-2 i)^{2}} d z
$$

where C is the circle with center $3 i$ and radius 2 , oriented counterclockwise.

Q3. (10 points) For each of the following functions f, determine whether there is a complex antiderivative F of f. In each case, either (i) describe an antiderivative by an explicit formula, or (ii) describe an antiderivative using a contour integral, or (iii) explain carefully why an antiderivative does not exist.
(a) (3 points) $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, f(z)=1 / z^{2}$.
(b) (3 points) $f: \mathbb{C} \backslash\{i\} \rightarrow \mathbb{C}, f(z)=1 /(z-i)$.
(c) (4 points) $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\sin \left(z^{2}\right)$.

Q4. (10 points) Consider the function

$$
f(z)=\frac{e^{i z}}{z^{2}+4}
$$

(a) (2 points) Determine the domain $U \subset \mathbb{C}$ of f.
(b) (2 points) State the Cauchy integral formula.
(c) (6 points) Let C be the circle with center $2+i$ and radius 3 , oriented counterclockwise. Compute the contour integral $\int_{C} f(z) d z$.

Q5. (10 points) Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=z+e^{z}$.
(a) (4 points) Find the critical points of f.
(b) (2 points) Express f in the form $f(x+i y)=u(x, y)+i v(x, y)$, where u and v are real valued functions of x and y.
(c) (4 points) Show that the critical points of u are saddle points.

Q6. (10 points) Consider the function

$$
f(z)=\frac{z}{(z-1)(2 z-1)}
$$

(a) (3 points) Express $f(z)$ in the form

$$
f(z)=\frac{A}{z-1}+\frac{B}{2 z-1}
$$

for some constants A and B.
(b) (4 points) Using part (a) or otherwise, compute the power series expansion of $f(z)$ about $z=0$.
(c) (3 points) Determine the radius of convergence of the power series expansion of $f(z)$ about $z=0$.

