Math 421 Midterm 1, Wednesday 10/14/15, 7PM-8:30PM.
Instructions: Exam time is 90 mins. There are 7 questions for a total of 65 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely.

Q1. (6 points) Give a precise geometric description of the transformation $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=(1+2 i) z$.
Q2. (8 points) Find all complex solutions of the equation $z^{3}-8 i=0$. Express the solutions in the form $z=x+i y$. Draw a picture of the solutions in the complex plane $\mathbb{C}=\mathbb{R}^{2}$.
Q3. (6 points) Find all complex solutions of the equation $e^{i z}+7=0$.
Q4. (12 points) In each of the following cases, give a precise description of the image $f(R)$ of the region $R \subset \mathbb{C}$ under the transformation f. Include a sketch.
(a) (6 points) $R=\left\{z=x+i y \in \mathbb{C} \mid 0 \leq x \leq y\right.$ and $\left.x^{2}+y^{2} \leq 9\right\}$, $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=z^{3}$.
(b) (6 points) $R=\{z=x+i y \in \mathbb{C} \mid 0 \leq x \leq \pi$ and $\pi \leq y \leq 2 \pi\}$, $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=e^{z}$.

Q5. (10 points) In each of the following cases, determine whether the function $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable.
(a) (4 points) $f(x+i y)=(-4 x y+3 y)+i\left(2 x^{2}-4 x-2 y^{2}\right)$.
(b) (6 points) $f(x+i y)=\left(x e^{x} \sin y+y e^{x} \cos y\right)+i\left(y e^{x} \sin y-x e^{x} \cos y\right)$.

Q6. (15 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the transformation given by $f(z)=i z^{2}+i$. Write $z=x+i y$ and $f(z)=w=u+i v$.
(a) (6 points) Let L_{1} be the horizontal line with equation $y=1$. Compute the image $f\left(L_{1}\right)$ of the line L_{1} under the transformation f. (Find the equation in u and v defining the curve $f\left(L_{1}\right)$, and sketch the curve.)
(b) (6 points) Let L_{2} be the vertical line with equation $x=1$. Compute the image $f\left(L_{2}\right)$ of the line L_{2} under the transformation f.
(c) (3 points) Determine the angle between the curves $f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ at the point $f(1+i)$.

Q7. (8 points)
(a) (2 points) Explain geometrically why $|z+w| \leq|z|+|w|$ for all $z, w \in \mathbb{C}$.
(b) (6 points) Using part (a) or otherwise, prove that $|\cos z| \leq \cosh y$ for all $z=x+i y \in \mathbb{C}$.

