Math 300.3 Final exam review questions

Paul Hacking

April 30, 2017

Syllabus: Sundstrom, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3, 5.1, 5.2, 5.3, 6.1, 6.3, 6.4, 6.5, 7.1, 7.2, 7.3, 8.1, 8.2, 8.3.

See also the class log at http://people.math.umass.edu/ hacking/300S17/classlog/ Justify your answers carefully.

- (1) Let P and Q be statements.
 - (a) What is the contrapositive of $P \Rightarrow Q$? Use a truth table to show that $P \Rightarrow Q$ and its contrapositive are equivalent.
 - (b) What is the converse of the statement $P \Rightarrow Q$? Use a truth table to show that $P \Rightarrow Q$ and its converse are *not* equivalent.
- (2) Let A, B, C be sets.
 - (a) Define the union $A \cup B$, the intersection $A \cap B$, and the difference $A \setminus B$.
 - (b) Show using a truth table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Check this result using a Venn diagram.
 - (c) Show using a truth table that $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$. Check this result using a Venn diagram.
- (3) Translate the following statements into english sentences.
 - (a) $(\forall x \in \mathbb{N})(x \ge 1)$
 - (b) $(\forall x \in \mathbb{R})(x^2 \ge 0)$
 - (c) $(\exists x \in \mathbb{R})(x^2 6x + 7 = 0)$

- (d) $(\exists x \in \mathbb{Z})(x^2 \equiv 2 \mod 7)$
- (e) $(\forall x, y \in \mathbb{R})((xy = 0) \Rightarrow ((x = 0) \operatorname{OR}(y = 0)))$
- (f) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(y > x)$
- (g) $(\forall y \in \mathbb{R})(\exists x \in \mathbb{R})(x^3 = y)$
- (4) Negate the following statements, then translate into an english sentence.
 - (a) $(\exists x \in \mathbb{Z})(x^2 \equiv 3 \mod 4)$
 - (b) $(\forall x \in \mathbb{R})(x^2 4x + 2 > 0)$
 - (c) $(\forall x \in \mathbb{N}) (\exists y \in \mathbb{N}) (y < x)$
 - (d) $(\exists b \in \mathbb{R}) (\forall x \in \mathbb{R}) (\log x \leq b)$
 - (e) $(\exists x, y, z \in \mathbb{N})(x^3 + y^3 = z^3)$
- (5) Translate the following sentences into mathematical statements using quantifiers.
 - (a) $x^2 + 2x + 3$ is positive for all real numbers x.
 - (b) There is a real number x such that $x^2 = 2$.
 - (c) For every positive integer n there is a real number a such that $e^x \ge x^n$ for $x \ge a$.
 - (d) There is a real number b such that $x x^2 \leq b$ for all real numbers x.
- (6) Define a sequence of integers a_1, a_2, a_3, \ldots recursively by $a_1 = 10$ and $a_{n+1} = 3a_n 8$ for $n \in \mathbb{N}$. Prove that $a_n = 2 \cdot 3^n + 4$ for all $n \in \mathbb{N}$.
- (7) Prove that

$$\sum_{r=1}^{n} (2r+1) = 3 + 5 + 7 + \dots + (2n+1) = n(n+2)$$

for each $n \in \mathbb{N}$.

(8) Prove that

$$\sum_{r=1}^{n} r(r+2) = 1 \cdot 3 + 2 \cdot 4 + \dots + n(n+2) = \frac{1}{6}n(n+1)(2n+7)$$

for each $n \in \mathbb{N}$.

- (9) Prove that $5^n > 4^n + 3^n + 2^n$ for all $n \in \mathbb{N}$ such that $n \ge 3$.
- (10) Define the Fibonacci numbers f_n for $n \in \mathbb{N}$ by $f_1 = f_2 = 1$ and $f_{n+1} = f_n + f_{n-1}$ for $n \ge 2$.
 - (a) Write down the first few terms of the Fibonnaci sequence f_1, f_2, f_3, \ldots
 - (b) Prove that $f_1^2 + f_2^2 + \dots + f_n^2 = f_n \cdot f_{n+1}$ for each $n \in \mathbb{N}$.
- (11) Let $a, b \in \mathbb{N}$. What is the definition of the greatest common divisor gcd(a, b)? Compute the greatest common divisor of the following pairs of integers
 - (a) 123, 39.
 - (b) 157,83.
 - (c) $2^5 \cdot 3^7 \cdot 5^9 \cdot 11^4$, $2 \cdot 3^2 \cdot 7^{10}$.
- (12) Prove that gcd(3n+2, 3n+5) = 1 for all $n \in \mathbb{N}$.
- (13) Find all solutions $x, y \in \mathbb{Z}$ of the following equations.
 - (a) 24x + 52y = 8
 - (b) 42x + 15y = 7
- (14) Find all solutions of the following congruences.
 - (a) $5x \equiv 12 \mod 17$.
 - (b) $x^2 + 3x + 1 \equiv 0 \mod 5$.
- (15) (a) Show that the congruence $x^3 + x + 1 \equiv 0 \mod 4$ has no solutions.
 - (b) Using part (a) or otherwise show that the equation $x^3 + x = 4y^2 + 7$ has no solutions $x, y \in \mathbb{Z}$.
- (16) What does it mean to say a positive integer n > 1 is prime?
 - (a) State the fundamental theorem of arithmetic.
 - (b) List all the positive integers d such that $d \mid 108$.
 - (c) Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorization of a positive integer n. How many positive integers d such that $d \mid n$ are there?

- (17) Prove the following statement: For all $a, b \in \mathbb{N}$, if $a^2 \mid b^2$ then $a \mid b$.
- (18) Let A and B be sets and $f: A \to B$ a function from A to B. What does it mean to say that f is injective? What does it mean to say that f is surjective? For each of the following functions determine whether f is injective and whether f is surjective. (Justify your answers carefully.)
 - (a) $f: [0, \pi] \to \mathbb{R}, f(x) = 2\sin x + 5.$
 - (b) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 3x.$
 - (c) $f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^2 + y^2$.
 - (d) $f: \mathbb{N}^3 \to \mathbb{N}, f(x, y, z) = 2^x \cdot 3^y \cdot 5^z$.
- (19) Let $a, b \in \mathbb{N}$.
 - (a) Show that the function $f: \mathbb{Z}^2 \to \mathbb{Z}$ defined by f(x, y) = ax + by is surjective if and only if gcd(a, b) = 1.
 - (b) Is f injective? Justify your answer.
- (20) Let $m \in \mathbb{N}$ and let $a \in \mathbb{N}$ be such that gcd(a, m) = 1
 - (a) Let $A = \{0, 1, 2, ..., m 1\}$. Let $f: A \to A$ be the function defined as follows: for all $x \in A$, f(x) is the remainder when ax is divided by m. (In other words, $f(x) \in A$ is determined by $f(x) \equiv ax \mod m$.) Prove that f is injective.
 - (b) Deduce that f is bijective.
- (21) Let A and B be sets and $f: A \to B$ a function from A to B. What condition must f satisfy in order to have an inverse? In each of the following cases determine whether f has an inverse and if so describe the inverse explicitly.
 - (a) $f \colon \mathbb{R} \to [5, \infty), f(x) = 4e^x + 5.$
 - (b) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = 3x + 8.$
 - (c) $f: [1,2] \to [3,6], f(x) = x^2 6x + 11.$
 - (d) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = 1 + \frac{1}{x}$.
 - (e) $f: (0, \infty) \to \mathbb{R}, f(x) = x \frac{1}{x}$.
- (22) Let A, B be sets and $f: A \to B, g: B \to A$ be functions.

- (a) Show that if g(f(x)) = x for all $x \in A$ and f is surjective, then f(g(y)) = y for all $y \in B$. (So g is the inverse of f and f is bijective).
- (b) Give an example of functions f and g such that g(f(x)) = x for all $x \in A$ but $f(g(y)) \neq y$ for some $y \in B$.
- (23) Let A and B be finite sets such that |A| = m and |B| = n.
 - (a) Prove that there are n^m functions from A to B.
 - (b) Prove that there are

$$n!/(n-m)! = n(n-1)(n-2)\cdots(n-m+1)$$

injective functions from A to B if $m \leq n$ and none if m > n.

(c) How many surjective functions from A to B are there?

[Hint for (c): Let S be the set of all functions from A to B. Write $B = \{b_1, b_2, \ldots, b_n\}$. For each $i = 1, 2, \ldots, n$, let $S_i \subset S$ be the set of functions f such that b_i is not in the range of f. So the set of surjective functions equals $S \setminus (S_1 \cup \cdots \cup S_n)$. Now use the inclusion-exclusion principle to find a formula for the number of surjective functions. What happens if m < n?]

- (24) Let S be a set and R a relation on S. What does it mean to say that R is an equivalence relation? In each of the following cases, determine whether R is an equivalence relation.
 - (a) $S = \mathbb{R}, aRb \iff a \leqslant b.$
 - (b) $S = \mathbb{R}, aRb \iff b = a + \pi n$ for some $n \in \mathbb{Z}$.
 - (c) $S = \mathbb{N}, aRb \iff a \mid b.$
 - (d) $S = \mathbb{Z}, aRb \iff 7 \mid a b.$
 - (e) $S = \mathbb{R}, aRb \iff |a b| \leq 2.$
 - (f) $S = \mathbb{R}^2$, $(a_1, a_2)R(b_1, b_2) \iff \sqrt{(a_1 b_1)^2 + (a_2 b_2)^2} < 5$.
 - (g) $S = \mathbb{Q}, aRb \iff b = 3^n a$ for some $n \in \mathbb{Z}$.
 - (h) $S = \mathbb{N}, aRb \iff ab = n^2$ for some $n \in \mathbb{N}$.
 - (i) $S = \mathbb{Z}^2$, $(a_1, a_2)R(b_1, b_2) \iff a_1b_2 = a_2b_1$.

(25) Let $S = \{1, 2, 3, 4, 5, 6\}$ and let R be the relation on S defined by the following table. (In row a and column b of the table we write Y if aRb and N otherwise.) Determine whether R is an equivalence relation and if so list the equivalence classes.

R	1	2	3	4	5	6
1	Y	N	N	N	Y	N
2	N	Y	Y	N	N	Y
3	N	Y	Y	N	N	Y
4	N	N	N	Y	N	N
5	Y	N	N	N	Y	N
6	N	2 N Y Y N N Y	Y	N	N	Y

(26) Let $S = \mathbb{R}^2$ and let R be the relation on S defined by

$$(x_1, y_1)R(x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

- (a) Show that R is an equivalence relation.
- (b) Draw a picture showing the equivalence classes of R in \mathbb{R}^2 .

(27) Let $S = \mathbb{R}^2 \setminus \{(0,0)\}$ and R be the relation on S defined by

 $(x_1, y_1)R(x_2, y_2) \iff (x_2, y_2) = \lambda(x_1, y_1)$ for some positive real number λ .

- (a) Show that R is an equivalence relation.
- (b) Draw a picture showing the equivalence classes of R in the plane \mathbb{R}^2 .
- (c) Let $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ be the circle with center the origin and radius 1. Let f be the function

$$f: C \to S/R$$

from the circle C to the set S/R of equivalence classes of R given by f(x, y) = [(x, y)] (that is, f(x, y) is the equivalence class of (x, y)). Show that f is a bijection.