Math 300.3 Final exam review questions

Paul Hacking

April 30, 2017

Syllabus: Sundstrom, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3, $5.1,5.2,5.3,6.1,6.3,6.4,6.5,7.1,7.2,7.3,8.1,8.2,8.3$.

See also the class log at http://people.math.umass.edu/ hacking/300S17/classlog/ Justify your answers carefully.
(1) Let P and Q be statements.
(a) What is the contrapositive of $P \Rightarrow Q$? Use a truth table to show that $P \Rightarrow Q$ and its contrapositive are equivalent.
(b) What is the converse of the statement $P \Rightarrow Q$? Use a truth table to show that $P \Rightarrow Q$ and its converse are not equivalent.
(2) Let A, B, C be sets.
(a) Define the union $A \cup B$, the intersection $A \cap B$, and the difference $A \backslash B$.
(b) Show using a truth table that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$. Check this result using a Venn diagram.
(c) Show using a truth table that $(A \cup B) \backslash C=(A \backslash C) \cup(B \backslash C)$. Check this result using a Venn diagram.
(3) Translate the following statements into english sentences.
(a) $(\forall x \in \mathbb{N})(x \geqslant 1)$
(b) $(\forall x \in \mathbb{R})\left(x^{2} \geqslant 0\right)$
(c) $(\exists x \in \mathbb{R})\left(x^{2}-6 x+7=0\right)$
(d) $(\exists x \in \mathbb{Z})\left(x^{2} \equiv 2 \bmod 7\right)$
(e) $(\forall x, y \in \mathbb{R})((x y=0) \Rightarrow((x=0) \mathrm{OR}(y=0)))$
(f) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(y>x)$
(g) $(\forall y \in \mathbb{R})(\exists x \in \mathbb{R})\left(x^{3}=y\right)$
(4) Negate the following statements, then translate into an english sentence.
(a) $(\exists x \in \mathbb{Z})\left(x^{2} \equiv 3 \bmod 4\right)$
(b) $(\forall x \in \mathbb{R})\left(x^{2}-4 x+2>0\right)$
(c) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(y<x)$
(d) $(\exists b \in \mathbb{R})(\forall x \in \mathbb{R})(\log x \leqslant b)$
(e) $(\exists x, y, z \in \mathbb{N})\left(x^{3}+y^{3}=z^{3}\right)$
(5) Translate the following sentences into mathematical statements using quantifiers.
(a) $x^{2}+2 x+3$ is positive for all real numbers x.
(b) There is a real number x such that $x^{2}=2$.
(c) For every positive integer n there is a real number a such that $e^{x} \geqslant x^{n}$ for $x \geqslant a$.
(d) There is a real number b such that $x-x^{2} \leqslant b$ for all real numbers x.
(6) Define a sequence of integers $a_{1}, a_{2}, a_{3}, \ldots$ recursively by $a_{1}=10$ and $a_{n+1}=3 a_{n}-8$ for $n \in \mathbb{N}$. Prove that $a_{n}=2 \cdot 3^{n}+4$ for all $n \in \mathbb{N}$.
(7) Prove that

$$
\sum_{r=1}^{n}(2 r+1)=3+5+7+\cdots+(2 n+1)=n(n+2)
$$

for each $n \in \mathbb{N}$.
(8) Prove that

$$
\sum_{r=1}^{n} r(r+2)=1 \cdot 3+2 \cdot 4+\cdots+n(n+2)=\frac{1}{6} n(n+1)(2 n+7)
$$

for each $n \in \mathbb{N}$.
(9) Prove that $5^{n}>4^{n}+3^{n}+2^{n}$ for all $n \in \mathbb{N}$ such that $n \geqslant 3$.
(10) Define the Fibonacci numbers f_{n} for $n \in \mathbb{N}$ by $f_{1}=f_{2}=1$ and $f_{n+1}=$ $f_{n}+f_{n-1}$ for $n \geqslant 2$.
(a) Write down the first few terms of the Fibonnaci sequence $f_{1}, f_{2}, f_{3}, \ldots$.
(b) Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} \cdot f_{n+1}$ for each $n \in \mathbb{N}$.
(11) Let $a, b \in \mathbb{N}$. What is the definition of the greatest common divisor $\operatorname{gcd}(a, b)$? Compute the greatest common divisor of the following pairs of integers
(a) 123,39 .
(b) 157,83 .
(c) $2^{5} \cdot 3^{7} \cdot 5^{9} \cdot 11^{4}, 2 \cdot 3^{2} \cdot 7^{10}$.
(12) Prove that $\operatorname{gcd}(3 n+2,3 n+5)=1$ for all $n \in \mathbb{N}$.
(13) Find all solutions $x, y \in \mathbb{Z}$ of the following equations.
(a) $24 x+52 y=8$
(b) $42 x+15 y=7$
(14) Find all solutions of the following congruences.
(a) $5 x \equiv 12 \bmod 17$.
(b) $x^{2}+3 x+1 \equiv 0 \bmod 5$.
(15) (a) Show that the congruence $x^{3}+x+1 \equiv 0 \bmod 4$ has no solutions.
(b) Using part (a) or otherwise show that the equation $x^{3}+x=4 y^{2}+7$ has no solutions $x, y \in \mathbb{Z}$.
(16) What does it mean to say a positive integer $n>1$ is prime?
(a) State the fundamental theorem of arithmetic.
(b) List all the positive integers d such that $d \mid 108$.
(c) Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorization of a positive integer n. How many positive integers d such that $d \mid n$ are there?
(17) Prove the following statement: For all $a, b \in \mathbb{N}$, if $a^{2} \mid b^{2}$ then $a \mid b$.
(18) Let A and B be sets and $f: A \rightarrow B$ a function from A to B. What does it mean to say that f is injective? What does it mean to say that f is surjective? For each of the following functions determine whether f is injective and whether f is surjective. (Justify your answers carefully.)
(a) $f:[0, \pi] \rightarrow \mathbb{R}, f(x)=2 \sin x+5$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-3 x$.
(c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{2}+y^{2}$.
(d) $f: \mathbb{N}^{3} \rightarrow \mathbb{N}, f(x, y, z)=2^{x} \cdot 3^{y} \cdot 5^{z}$.
(19) Let $a, b \in \mathbb{N}$.
(a) Show that the function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ defined by $f(x, y)=a x+b y$ is surjective if and only if $\operatorname{gcd}(a, b)=1$.
(b) Is f injective? Justify your answer.
(20) Let $m \in \mathbb{N}$ and let $a \in \mathbb{N}$ be such that $\operatorname{gcd}(a, m)=1$
(a) Let $A=\{0,1,2, \ldots, m-1\}$. Let $f: A \rightarrow A$ be the function defined as follows: for all $x \in A, f(x)$ is the remainder when $a x$ is divided by m. (In other words, $f(x) \in A$ is determined by $f(x) \equiv a x \bmod m$.) Prove that f is injective.
(b) Deduce that f is bijective.
(21) Let A and B be sets and $f: A \rightarrow B$ a function from A to B. What condition must f satisfy in order to have an inverse? In each of the following cases determine whether f has an inverse and if so describe the inverse explicitly.
(a) $f: \mathbb{R} \rightarrow[5, \infty), f(x)=4 e^{x}+5$.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=3 x+8$.
(c) $f:[1,2] \rightarrow[3,6], f(x)=x^{2}-6 x+11$.
(d) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, f(x)=1+\frac{1}{x}$.
(e) $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=x-\frac{1}{x}$.
(22) Let A, B be sets and $f: A \rightarrow B, g: B \rightarrow A$ be functions.
(a) Show that if $g(f(x))=x$ for all $x \in A$ and f is surjective, then $f(g(y))=y$ for all $y \in B$. (So g is the inverse of f and f is bijective).
(b) Give an example of functions f and g such that $g(f(x))=x$ for all $x \in A$ but $f(g(y)) \neq y$ for some $y \in B$.
(23) Let A and B be finite sets such that $|A|=m$ and $|B|=n$.
(a) Prove that there are n^{m} functions from A to B.
(b) Prove that there are

$$
n!/(n-m)!=n(n-1)(n-2) \cdots(n-m+1)
$$

injective functions from A to B if $m \leqslant n$ and none if $m>n$.
(c) How many surjective functions from A to B are there?
[Hint for (c): Let S be the set of all functions from A to B. Write $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. For each $i=1,2, \ldots, n$, let $S_{i} \subset S$ be the set of functions f such that b_{i} is not in the range of f. So the set of surjective functions equals $S \backslash\left(S_{1} \cup \cdots \cup S_{n}\right)$. Now use the inclusion-exclusion principle to find a formula for the number of surjective functions. What happens if $m<n$?]
(24) Let S be a set and R a relation on S. What does it mean to say that R is an equivalence relation? In each of the following cases, determine whether R is an equivalence relation.
(a) $S=\mathbb{R}, a R b \Longleftrightarrow a \leqslant b$.
(b) $S=\mathbb{R}, a R b \Longleftrightarrow b=a+\pi n$ for some $n \in \mathbb{Z}$.
(c) $S=\mathbb{N}, a R b \Longleftrightarrow a \mid b$.
(d) $S=\mathbb{Z}, a R b \Longleftrightarrow 7 \mid a-b$.
(e) $S=\mathbb{R}, a R b \Longleftrightarrow|a-b| \leqslant 2$.
(f) $S=\mathbb{R}^{2},\left(a_{1}, a_{2}\right) R\left(b_{1}, b_{2}\right) \Longleftrightarrow \sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}<5$.
(g) $S=\mathbb{Q}, a R b \Longleftrightarrow b=3^{n} a$ for some $n \in \mathbb{Z}$.
(h) $S=\mathbb{N}, a R b \Longleftrightarrow a b=n^{2}$ for some $n \in \mathbb{N}$.
(i) $S=\mathbb{Z}^{2},\left(a_{1}, a_{2}\right) R\left(b_{1}, b_{2}\right) \Longleftrightarrow a_{1} b_{2}=a_{2} b_{1}$.
(25) Let $S=\{1,2,3,4,5,6\}$ and let R be the relation on S defined by the following table. (In row a and column b of the table we write Y if $a R b$ and N otherwise.) Determine whether R is an equivalence relation and if so list the equivalence classes.

R	1	2	3	4	5	6
1	Y	N	N	N	Y	N
2	N	Y	Y	N	N	Y
3	N	Y	Y	N	N	Y
4	N	N	N	Y	N	N
5	Y	N	N	N	Y	N
6	N	Y	Y	N	N	Y

(26) Let $S=\mathbb{R}^{2}$ and let R be the relation on S defined by

$$
\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}
$$

(a) Show that R is an equivalence relation.
(b) Draw a picture showing the equivalence classes of R in \mathbb{R}^{2}.
(27) Let $S=\mathbb{R}^{2} \backslash\{(0,0)\}$ and R be the relation on S defined by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{2}, y_{2}\right)=\lambda\left(x_{1}, y_{1}\right)$ for some positive real number λ.
(a) Show that R is an equivalence relation.
(b) Draw a picture showing the equivalence classes of R in the plane \mathbb{R}^{2}.
(c) Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$ be the circle with center the origin and radius 1 . Let f be the function

$$
f: C \rightarrow S / R
$$

from the circle C to the set S / R of equivalence classes of R given by $f(x, y)=[(x, y)]$ (that is, $f(x, y)$ is the equivalence class of $(x, y))$. Show that f is a bijection.

