Math 235 Practice Midterm 2

Q1.
(a) Let $A=\left[\begin{array}{cc}s+1 & -1 \\ 2 & s+4\end{array}\right]$ where s is a real number. Find the values of s for which A is invertible, and for these values of s compute the inverse A^{-1} of A.
(b) Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$. Compute the inverse A^{-1} of A.
(c) In each of the following cases, find a value of h such that the matrix is not invertible.
(i) $\left[\begin{array}{ccc}1 & -1 & -2 \\ 2 h & h & 0 \\ 3 & 0 & -2\end{array}\right]$,
(ii) $\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & -1 & h \\ 3 & 0 & 4\end{array}\right]$,
(iii) $\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 3 & h \\ 2 & 4 & -2\end{array}\right]$.

Q2. Consider the two 4×4 matrices

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 10
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
1 & 3 & 9 & 1 \\
0 & 0 & 2 & 0 \\
3 & 2 & 4 & 1 \\
5 & 0 & 7 & 2
\end{array}\right)
$$

(a) Compute $\operatorname{det} A$ and $\operatorname{det} B$.
(b) Determine if A and B are invertible.
(c) Is $A B$ invertible?

Q3. Let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ be a 3×3 matrix with $\operatorname{det} A=-12$.
(a) Let T be the tetrahedron in \mathbb{R}^{3} with vertices $\mathbf{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. What is the volume of T ?
(b) Let $B=\left[\begin{array}{lll}0 & 1 & 3 \\ 2 & 1 & 5 \\ 3 & 6 & 4\end{array}\right]$ and let $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $U(\mathbf{x})=$ $B \mathbf{x}$. Compute the volume of the image $U(T)$ of the tetrahedron T under the linear transformation U.
(c) Let $C=\left[\begin{array}{lll}\mathbf{a}_{1}-\mathbf{a}_{2}+\mathbf{a}_{3} & -\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3} & \mathbf{a}_{1}+\mathbf{a}_{2}-\mathbf{a}_{3}\end{array}\right]$. Compute det C.

Q4.
(a) Show that $W=\left\{\left[\begin{array}{c}x \\ x-y \\ y\end{array}\right]: x, y \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.
(b) Let $A=\left[\begin{array}{cccc}-3 & 1 & 3 & 4 \\ 1 & 2 & -1 & -2 \\ -3 & 8 & 4 & 2\end{array}\right]$. Find a basis of $\operatorname{Nul}(A)$ and a basis of $\operatorname{Col}(A)$. Is the vector $\left[\begin{array}{c}20 \\ 4 \\ 0 \\ 14\end{array}\right]$ in $\operatorname{Nul}(A) ?$

Q5. Let \mathbb{P}_{2} be the vector space of polynomials of degree at most 2 . The set $\mathcal{B}=\left\{1, t, t^{2}\right\}$ is a basis of \mathbb{P}_{2}.
(a) Show that the set $S=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right\}$ spans \mathbb{P}_{2} where

$$
\mathbf{p}_{1}(t)=2-t-t^{2}, \quad \mathbf{p}_{2}(t)=2 t+t^{2}, \quad \mathbf{p}_{3}(t)=3 t, \quad \mathbf{p}_{4}(t)=2+t
$$

(b) Without doing any computations, explain why some subset of S is a basis for \mathbb{P}_{2}.
(c) The set $\mathcal{B}=\left\{1, t+2, t^{2}+t+3\right\}$ is another basis of \mathbb{P}_{2}. Find the polynomial \mathbf{p} whose \mathcal{B}-coordinate vector is given by $[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$

Q6.
(a) Let \mathbb{P}_{2} be the vector space of polynomials in the variable t of degree ≤ 2. Let $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ be the polynomials defined by

$$
\mathbf{b}_{1}(t)=1+t+t^{2}, \quad \mathbf{b}_{2}(t)=1+t, \quad \mathbf{b}_{3}(t)=1
$$

and let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. Let \mathbf{p} be the polynomial $\mathbf{p}(t)=1-t+t^{2}$ in \mathbb{P}_{2}. Find the \mathcal{B}-coordinate vector $[\mathbf{p}]_{B}$ of \mathbf{p}.
(b) Let \mathbb{P}_{3} be the vector space of polynomials in the variable t of degree ≤ 3. Let H be the subspace of \mathbb{P}_{3} that consists of the polynomials \mathbf{p} such that $\mathbf{p}(2)=0$. Find a basis for H. What is the dimension of H ?

