Math 235 Practice Midterm 1

Q1. Consider the following system of linear equations:

x_1	+	$2x_2$	+			x_4	+	$3x_5$	=	1
$2x_1$	+	$4x_2$	+	x_3	+	$5x_4$			=	2
x_1	+	$2x_2$	_	x_3	_	x_4	+	$2x_5$	=	3

- (a) Write down the augmented matrix A of the above system of linear equations.
- (b) Find the reduced row echelon form of A.
- (c) Find the solution set of the corresponding system of linear equations.
- (d) Indicate the pivot positions in A and determine which columns of A are pivot columns.

Q2.

(a) Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\4\\9 \end{bmatrix}.$$

Do the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ span \mathbb{R}^3 ?

(b) Describe the plane in \mathbb{R}^3 defined by the equation $2x_1 + 3x_2 + 5x_3 = 0$ as the span of a set of two vectors.

Q3. Let $A = \begin{bmatrix} 0 & 0 & 2 & 2 & -1 \\ 1 & 1 & 0 & 1 & 1 \\ 2 & 2 & -2 & 0 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$.

- (a) Find the general solution of the equation $A\mathbf{x} = \mathbf{b}$. Write your solution in vector form.
- (b) (4 points) Using your answer to part (a) or otherwise, find the general solution of the equation $A\mathbf{x} = \mathbf{0}$.
- (c) (4 points) Does the equation $A\mathbf{x} = \mathbf{c}$ have a solution for every vector \mathbf{c} in \mathbb{R}^3 ? Justify your answer carefully.

Q4. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ t \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, where *t* is some real number.

(a) Find all the values of t for which $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, and find a linear dependence relation in each case.

(b) Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ t & 1 & 0 \end{bmatrix}$, where t is a real number. For which values of t does the equation $A\mathbf{x} = \mathbf{0}$ have a non-trivial solution?

Q5.

- (a) Find the standard matrix of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\mathbf{e}_1) = \begin{bmatrix} 2\\1\\0 \end{bmatrix}, T(\mathbf{e}_2) = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, and $T(\mathbf{e}_3) = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$.
- (b) Determine if the transformation T from part (a) is onto.
- (c) Determine if the transformation T from part (a) is one-to-one
- (d) Determine if the transformation $S : \mathbb{R}^3 \to \mathbb{R}^4$ given by

$$S(x_1, x_2, x_3) = (x_1, x_1 + x_2^2, x_1 + x_3, x_2 + x_3)$$

is linear. If it is linear, give its standard matrix. If it is not linear, explain which property of linear transformations it violates (and why it violates it).

Q6.

(a) Let $S : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by $S(\mathbf{x}) = A\mathbf{x}$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by $T(\mathbf{x}) = B\mathbf{x}$, where

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Find the standard matrix for the linear transformation $U : \mathbb{R}^3 \to \mathbb{R}^2$, where $U(\mathbf{x}) = T(S(\mathbf{x}))$.

- (b) Let $R : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by reflection across the x_1 -axis, and let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by reflection across the line $x_1 = x_2$. Find the standard matrices for R and S.
- (c) For R and S defined in part (b), let $V : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $V(\mathbf{x}) = R(S(\mathbf{x}))$. Is V onto? Show your work.