Q1.

(a) Consider the following 4×4 matrix A:

Find a basis for Col(A) and a basis for Row(A).

- (b) Suppose A is a 5 × 9 non-zero matrix. What are the possible values of (i) rank(A) and (ii) dim Nul(A)?
- **Q2**. Consider the 2×2 matrix

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}.$$

- (a) Find all the eigenvalues of A.
- (b) Find an eigenvector for each eigenvalue of A.
- (c) Determine an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.
- (d) Using your answer to part (c) or otherwise, determine a formula for the kth power A^k of A, valid for any positive integer k. (You should write an explicit expression for each entry of the 2×2 matrix A^k .)

Q3. Let

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

- (a) Show that \mathbf{v} is an eigenvector of A, and find the corresponding eigenvalue.
- (b) Given that 2 is an eigenvalue of A, find a basis for the eigenspace of A corresponding to the eigenvalue $\lambda = 2$.
- (c) Is A diagonalizable? Justify your answer carefully.

Q4. Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 4 & 0 & 5 \end{bmatrix}$$
.

(a) Find the eigenvalues of A.

- (b) For each eigenvalue of A, find a basis of the eigenspace.
- (c) Is A diagonalizable? Justify your answer carefully.

Q5. Let
$$A = \begin{bmatrix} 2 & 1 \\ -5 & 4 \end{bmatrix}$$
.

- (a) Find the complex eigenvalues of A.
- (b) Find a complex eigenvector for each complex eigenvalue of A.
- (c) Find an invertible matrix P and a rotation-scaling matrix C such that $A = PCP^{-1}$.
- (d) Find the scaling factor r and angle of rotation θ for the rotation scaling matrix C from part (c).

Q6. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

- (a) Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is an orthogonal set. Explain why $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is a basis for \mathbb{R}^3 .
- (b) Write \mathbf{x} as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 .
- (c) Let *L* be the line in \mathbb{R}^3 passing through the origin in the direction $\mathbf{u} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$. Find the

closest point \mathbf{y} on the line L to the point $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$, and compute the distance from \mathbf{x} to \mathbf{y} .

(d) Let $W \subset \mathbb{R}^3$ be the plane spanned by $\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2\\ 5\\ 1 \end{bmatrix}$. Determine a basis for the orthogonal complement W^{\perp} of W.