## Math 235 Practice Final

Q1.
(a) Consider the following $4 \times 4$ matrix $A$ :

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & 3 \\
-2 & 4 & 5 & -5 \\
3 & -6 & -6 & 8 \\
0 & 1 & -2 & 3
\end{array}\right]
$$

Find a basis for $\operatorname{Col}(A)$ and a basis for $\operatorname{Row}(A)$.
(b) Suppose $A$ is a $5 \times 9$ non-zero matrix. What are the possible values of (i) $\operatorname{rank}(A)$ and (ii) $\operatorname{dim} \operatorname{Nul}(A)$ ?

Q2. Consider the $2 \times 2$ matrix

$$
A=\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]
$$

(a) Find all the eigenvalues of $A$.
(b) Find an eigenvector for each eigenvalue of $A$.
(c) Determine an invertible matrix $P$ and a diagonal matrix $D$ such that $A=P D P^{-1}$.
(d) Using your answer to part (c) or otherwise, determine a formula for the $k$ th power $A^{k}$ of $A$, valid for any positive integer $k$. (You should write an explicit expression for each entry of the $2 \times 2$ matrix $A^{k}$.)

Q3. Let

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right]
$$

(a) Show that $\mathbf{v}$ is an eigenvector of $A$, and find the corresponding eigenvalue.
(b) Given that 2 is an eigenvalue of $A$, find a basis for the eigenspace of $A$ corresponding to the eigenvalue $\lambda=2$.
(c) Is $A$ diagonalizable? Justify your answer carefully.

Q4. Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0 \\ 4 & 0 & 5\end{array}\right]$.
(a) Find the eigenvalues of $A$.
(b) For each eigenvalue of $A$, find a basis of the eigenspace.
(c) Is $A$ diagonalizable? Justify your answer carefully.

Q5. Let $A=\left[\begin{array}{cc}2 & 1 \\ -5 & 4\end{array}\right]$.
(a) Find the complex eigenvalues of $A$.
(b) Find a complex eigenvector for each complex eigenvalue of $A$.
(c) Find an invertible matrix $P$ and a rotation-scaling matrix $C$ such that $A=P C P^{-1}$.
(d) Find the scaling factor $r$ and angle of rotation $\theta$ for the rotation scaling matrix $C$ from part (c).
Q6. Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(a) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is an orthogonal set. Explain why $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for $\mathbb{R}^{3}$.
(b) Write $\mathbf{x}$ as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\mathbf{v}_{3}$.
(c) Let $L$ be the line in $\mathbb{R}^{3}$ passing through the origin in the direction $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Find the closest point $\mathbf{y}$ on the line $L$ to the point $\mathbf{x}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$, and compute the distance from $\mathbf{x}$ to y .
(d) Let $W \subset \mathbb{R}^{3}$ be the plane spanned by $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]$. Determine a basis for the orthogonal complement $W^{\perp}$ of $W$.

