235.5 Supplementary Final exam review questions

Paul Hacking

April 30, 2015
(1) Let A be an $n \times n$ matrix. Recall that we say a nonzero vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of A with eigenvalue $\lambda \in \mathbb{R}$ if $A \mathbf{v}=\lambda \mathbf{v}$.
Here is the strategy to find the eigenvalues and eigenvectors of A :
(a) Solve the characteristic equation $\operatorname{det}(A-\lambda I)=0$ to find the eigenvalues.
(b) For each eigenvalue λ solve the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$ to find the eigenvectors \mathbf{v} with eigenvalue λ.
[Why does this work? The equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$ is obtained from the equation $A \mathbf{v}=\lambda \mathbf{v}$ by rearranging the terms. This equation has a nonzero solution $\mathbf{v} \in \mathbb{R}^{n}$ exactly when $(A-\lambda I)$ is not invertible, equivalently $\operatorname{det}(A-\lambda I)=0$.]
The function $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n in the variable λ. In particular if $n=2$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \\
=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{gathered}
$$

and we can solve the characteristic equation using the quadratic formula. If $n=3$ we can determine the polynomial $\operatorname{det}(A-\lambda I)$ by computing the determinant using either Sarrus' rule or expansion along a row or column.
(2) For each of the following matrices, find all the eigenvalues and eigenvectors.
(a) $\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$
(b) $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right)$
(f) $\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$
(3) Let A be an $n \times n$ matrix. We say A is diagonalizable if there is a basis \mathcal{B} of \mathbb{R}^{n} consisting of eigenvectors of A. In this case, let $\mathcal{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be the basis of eigenvectors, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then the \mathcal{B}-matrix of the transformation $T(\mathbf{x})=A \mathbf{x}$ is the diagonal matrix D with diagonal entries the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (why?). Equivalently, writing S for the matrix with columns the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, we have

$$
A=S D S^{-1}
$$

We can determine whether A is diagonalizable as follows: for each eigenvalue λ, find a basis of the eigenspace

$$
E_{\lambda}=\left\{\mathbf{v} \in \mathbb{R}^{n} \mid A \mathbf{v}=\lambda \mathbf{v}\right\} \subset \mathbb{R}^{n}
$$

(the subspace of \mathbb{R}^{n} consisting of all the eigenvectors with eigenvalue λ together with the zero vector). Now combine the bases of all the eigenspaces. These vectors are linearly independent. If there are n vectors, then they form a basis \mathcal{B} of \mathbb{R}^{n} and A is diagonalizable, otherwise A is not diagonalizable.
(4) For each of the matrices A of Q2, determine whether A is diagonalizable. If A is diagonalizable identify a basis \mathcal{B} of \mathbb{R}^{n} consisting of eigenvectors of A and write down the \mathcal{B}-matrix of the linear transformation $T(\mathbf{x})=A \mathbf{x}$.
(5) If A is diagonalizable we can compute an explicit formula for powers of A as follows: Write $A=S D S^{-1}$ as above where D is the diagonal matrix with diagonal entries the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then for any positive integer k we have

$$
A^{k}=S D^{k} S^{-1}
$$

(why?) and D^{k} is the diagonal matrix with diagonal entries $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$.
(6) For the matrices A of Q2(a) and (b) compute a formula for A^{k}.
(7) Let V be a linear space and $T: V \rightarrow V$ a function (or transformation) from V to V. What does it mean to say that T is linear? (There are two conditions that must be satisfied.) If T is linear what is $T(\mathbf{0})$?
(8) What is the rank-nullity theorem? If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, what can you say about the kernel of T if $n>m$?
(9) Let V be a linear space and \mathcal{B} a basis of V. Let $T: V \rightarrow V$ be a linear transformation. What is the \mathcal{B}-matrix of T ? In each of the following examples, (i) check that the transformation T is linear, (ii) write down a basis \mathcal{B} of V, (iii) compute the \mathcal{B}-matrix of T, and (iv) determine whether T is an isomorphism.
(a) $V=\mathcal{P}_{2}$, the linear space of polynomials $f(x)$ of degree ≤ 2, and $T: V \rightarrow V, T(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$.
(b) $V=\mathbb{R}^{2 \times 2}$, the linear space of 2×2 matrices, and $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$, $T(X)=A X+X B$ where $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.

