235.5 Supplementary Final exam review questions

Paul Hacking

April 30, 2015

(1) Let A be an $n \times n$ matrix. Recall that we say a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ is an eigenvector of A with eigenvalue $\lambda \in \mathbb{R}$ if $A\mathbf{v} = \lambda \mathbf{v}$.

Here is the strategy to find the eigenvalues and eigenvectors of A:

- (a) Solve the characteristic equation $\det(A \lambda I) = 0$ to find the eigenvalues.
- (b) For each eigenvalue λ solve the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$ to find the eigenvectors \mathbf{v} with eigenvalue λ .

[Why does this work? The equation $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is obtained from the equation $A\mathbf{v} = \lambda \mathbf{v}$ by rearranging the terms. This equation has a nonzero solution $\mathbf{v} \in \mathbb{R}^n$ exactly when $(A - \lambda I)$ is not invertible, equivalently $det(A - \lambda I) = 0.$

The function $det(A - \lambda I)$ is a polynomial of degree n in the variable λ .

In particular if n = 2 and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then

$$\det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc)$$

and we can solve the characteristic equation using the quadratic formula. If n=3 we can determine the polynomial $\det(A-\lambda I)$ by computing the determinant using either Sarrus' rule or expansion along a row or column.

- (2) For each of the following matrices, find all the eigenvalues and eigenvectors.
 - (a) $\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$
 - (b) $\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$
 - $\text{(d)} \quad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$
 - (e) $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$
- (3) Let A be an $n \times n$ matrix. We say A is diagonalizable if there is a basis \mathcal{B} of \mathbb{R}^n consisting of eigenvectors of A. In this case, let $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be the basis of eigenvectors, with eigenvalues $\lambda_1, \dots, \lambda_n$. Then the \mathcal{B} -matrix of the transformation $T(\mathbf{x}) = A\mathbf{x}$ is the diagonal matrix D with diagonal entries the eigenvalues $\lambda_1, \dots, \lambda_n$ (why?). Equivalently, writing S for the matrix with columns the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, we have

$$A = SDS^{-1}.$$

We can determine whether A is diagonalizable as follows: for each eigenvalue λ , find a basis of the eigenspace

$$E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid A\mathbf{v} = \lambda \mathbf{v} \} \subset \mathbb{R}^n$$

(the subspace of \mathbb{R}^n consisting of all the eigenvectors with eigenvalue λ together with the zero vector). Now combine the bases of all the eigenspaces. These vectors are linearly independent. If there are n vectors, then they form a basis \mathcal{B} of \mathbb{R}^n and A is diagonalizable, otherwise A is not diagonalizable.

- (4) For each of the matrices A of Q2, determine whether A is diagonalizable. If A is diagonalizable identify a basis \mathcal{B} of \mathbb{R}^n consisting of eigenvectors of A and write down the \mathcal{B} -matrix of the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.
- (5) If A is diagonalizable we can compute an explicit formula for powers of A as follows: Write $A = SDS^{-1}$ as above where D is the diagonal matrix with diagonal entries the eigenvalues $\lambda_1, \ldots, \lambda_n$. Then for any positive integer k we have

$$A^k = SD^k S^{-1}$$

- (why?) and D^k is the diagonal matrix with diagonal entries $\lambda_1^k, \ldots, \lambda_n^k$.
- (6) For the matrices A of Q2(a) and (b) compute a formula for A^k .
- (7) Let V be a linear space and $T: V \to V$ a function (or transformation) from V to V. What does it mean to say that T is linear? (There are two conditions that must be satisfied.) If T is linear what is $T(\mathbf{0})$?
- (8) What is the rank-nullity theorem? If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, what can you say about the kernel of T if n > m?
- (9) Let V be a linear space and \mathcal{B} a basis of V. Let $T: V \to V$ be a linear transformation. What is the \mathcal{B} -matrix of T? In each of the following examples, (i) check that the transformation T is linear, (ii) write down a basis \mathcal{B} of V, (iii) compute the \mathcal{B} -matrix of T, and (iv) determine whether T is an isomorphism.
 - (a) $V = \mathcal{P}_2$, the linear space of polynomials f(x) of degree ≤ 2 , and $T: V \to V$, T(f(x)) = f'(x) + f''(x).
 - (b) $V = \mathbb{R}^{2\times 2}$, the linear space of 2×2 matrices, and $T \colon \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$, T(X) = AX + XB where $A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.