1. Consider the matrix A and its reduced row-echelon form $\operatorname{RREF}(A)$ given below.

$$
A=\left(\begin{array}{ccccc}
2 & 4 & 0 & 6 & 8 \\
4 & 8 & 3 & 21 & 19 \\
10 & 20 & 9 & 57 & 49 \\
4 & 8 & 6 & 30 & 22
\end{array}\right) \quad \operatorname{RREF}(A)=\left(\begin{array}{ccccc}
1 & 2 & 0 & 3 & 4 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(i) Find a basis for the kernel of A.

Solution

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-4 \\
0 \\
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

(ii) Find a basis for the image of A.

Solution

$$
\left\{\left(\begin{array}{c}
2 \\
4 \\
10 \\
4
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
9 \\
6
\end{array}\right)\right\}
$$

Note: To avoid having someone get this correct by accident, neither the first or third columns of $\operatorname{RREF}(A)$ are in $\operatorname{im}(A)$
2. Let L be the line in \mathbb{R}^{2} through the origin making angle $3 \pi / 4$ with the x-axis, and let M be the line in \mathbb{R}^{2} through the origin making angle θ making angle $\pi / 6$ with the x axis. Find the standard matrix for the composition $T=\operatorname{Ref}_{M} \circ \operatorname{Ref}_{L}$ of reflections through the lines L and M.

Solution:

$$
\begin{gathered}
L=\operatorname{span}\left\{\begin{array}{l}
\cos (3 \pi / 4) \\
\sin (3 \pi / 4)
\end{array}\right\}=\operatorname{span}\left\{\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right\} \\
M=\operatorname{span}\left\{\begin{array}{l}
\cos (\pi / 6) \\
\sin (\pi / 6)
\end{array}\right\}=\operatorname{span}\left\{\binom{\sqrt{3} / 2}{1 / 2}\right\}
\end{gathered}
$$

If L is spanned by a unit vector $\mathbf{u}=\cos \theta \mathbf{e}_{1}+\sin \theta \mathbf{e}_{2}$, then we can compute the reflection through L as

$$
\operatorname{Ref}_{L}(\mathbf{x})=2(\mathbf{u} \cdot \mathbf{x}) \mathbf{u}-\mathbf{x}=\left(2 \operatorname{proj}_{\mathbf{u}}-I\right) \mathbf{x}
$$

and the matrix $\left(2 \operatorname{proj}_{\mathbf{u}}-I\right)$ is given as

$$
\left(2 \operatorname{proj}_{\mathbf{u}}-I\right)=\left[\begin{array}{cc}
2 \cos ^{2} \theta-1 & 2 \sin \theta \cos \theta \\
2 \sin \theta \cos \theta & 2 \sin ^{2} \theta-1
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right] .
$$

Let A be the matrix such that $\operatorname{Ref}_{L}(\mathbf{x})=A \mathbf{x}$ and let B be the matrix such that $\operatorname{Ref}_{M}(\mathbf{x})=B \mathbf{x}$. We then have

$$
A=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

$$
B=\left[\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right]
$$

The composition of the maps $T=\operatorname{Ref}_{M} \circ \operatorname{Ref}_{L}$ has matrix equal to the matrix product

$$
B A=\left[\begin{array}{cc}
-\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & -\sqrt{3} / 2
\end{array}\right]
$$

3. Consider the following system of linear equations.

$$
\begin{gathered}
x-3 y+2 z=3 \\
4 x-9 y+17 z=6 \\
x-y+8 z=c
\end{gathered}
$$

(i) For which values of c do the equations have a solution?
(ii) For each value of c from part (a), find all solutions of the equations.

Solution

(i) $c=-1$
(ii) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=z\left(\begin{array}{c}-11 \\ -3 \\ 1\end{array}\right)+\left(\begin{array}{c}-3 \\ -2 \\ 0\end{array}\right)$, where $z \in \mathbb{R}$ is arbitrary.
4. Let $\vec{x}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ be a vector from \mathbb{R}^{3} and

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}, \quad \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(i) Find $[\vec{x}]_{\mathcal{B}}$ and $[\vec{x}]_{\mathcal{C}}$.
(ii) The transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by

$$
T\left([\vec{y}]_{\mathcal{B}}\right)=[\vec{y}]_{\mathcal{C}},
$$

for every $y \in \mathbb{R}^{3}$. Find the matrix of T.
(iii) Write the formula that relates $[\vec{x}]_{\mathcal{C}},[\vec{x}]_{\mathcal{B}}$ and T.

Solution

$$
[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],[\vec{x}]_{\mathcal{C}}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right], T=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right],[\vec{x}]_{\mathcal{C}}=T[\vec{x}]_{\mathcal{B}}
$$

5.

(i) Let L be the line in \mathbb{R}^{2} spanned by the vector $v=\binom{1}{-2}$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by reflection across the line L. Recall that T is given by the formula $T(x)=2\left(\frac{x \cdot v}{v \cdot v}\right) v-x$. Find the matrix A such that $T(x)=A x$ (in standard coordinates).
(ii) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by counter-clockwise rotation through $\frac{\pi}{2}$ radians. Find the matrix B such that $S(x)=B x$ (in standard coordinates).
(iii) Let $R=S \circ T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by reflection across L followed by counter-clockwise rotation through $\frac{\pi}{2}$ radians. Find the matrix C such that $R(x)=C x$ (in standard coordinates).
6. Write the vector $\vec{x}=\langle 3,4,0\rangle$ as a sum of two vectors, one of which is parallel to the line L spanned by the vector $\vec{v}=\langle 1,1,1\rangle$, and the other of which is perpendicular to L.
7. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by the matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
-12 & 4 & 8
\end{array}\right]
$$

(i) Show that the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]
$$

are in the kernel of T.
(ii) Show that \vec{v}_{1}, \vec{v}_{2} are linearly independent vectors. This implies $\operatorname{dim}(\operatorname{ker} T) \geq 2$.
(iii) Show that the vector

$$
\vec{w}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
$$

is in the image of T. This implies $\operatorname{dim}(\operatorname{im} T) \geq 1$.
(iv) Use the Rank-Nullity Theorem on the transformation T to show that

$$
\operatorname{dim}(\operatorname{ker} T)=2 \quad \text { and } \quad \operatorname{dim}(\operatorname{im} T)=1
$$

(v) Explain why $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a basis for $\operatorname{ker} T$ and $\{\vec{w}\}$ a basis for $\operatorname{im} T$.

Solution

(i) We need to show that $T\left(\vec{v}_{1}\right)=0$ and $T\left(\vec{v}_{2}\right)=0$. We have

$$
T\left(\vec{v}_{1}\right)=A \vec{v}_{1}=\left[\begin{array}{ccc}
3 & -1 & -2 \\
-12 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3-1-2 \\
-12+4+8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
T\left(\vec{v}_{2}\right)=A \vec{v}_{2}=\left[\begin{array}{ccc}
3 & -1 & -2 \\
-12 & 4 & 8
\end{array}\right]\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
0+2-2 \\
0-8+8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(ii) Let c_{1}, c_{2} be scalars such that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=0$. We want to show that $c_{1}=c_{2}=0$. We have the system of equations:

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=0 \Leftrightarrow c_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
c_{1} \\
c_{1}-2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The first equation is $c_{1}=0$. Then the third one becomes $c_{2}=0$. Therefore $c_{1}=c_{2}=0$.
(iii) The vector $T\left(\vec{e}_{2}\right)$ is the first column of A, that is

$$
T\left(\vec{e}_{2}\right)=A \vec{e}_{2}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]=\vec{w} .
$$

Since $T\left(\vec{e}_{2}\right)=\vec{w}$, the vector \vec{w} is in the image of T.
(iv) From the Rank-Nullity Theorem on the transformation T we know that

$$
\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{im} T)=\operatorname{dim}\left(\mathbb{R}^{3}\right)=3
$$

From parts (b) and (c) we know that $\operatorname{dim}(\operatorname{ker} T) \geq 2$ and $\operatorname{dim}(\operatorname{im} T) \geq 1$. If $\operatorname{dim}(\operatorname{ker} T)>2$ or $\operatorname{dim}(\operatorname{im} T)>1$, then the sum

$$
\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{im} T)
$$

is greater than 3 . Hence $\operatorname{dim}(\operatorname{ker} T)=2$ and $\operatorname{dim}(\operatorname{im} T)=1$.
(v) The set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ consists of 2 linearly independent vectors in $\operatorname{ker} T$, which is of dimension 2 , and so it is a basis. Similarly, the set $\{\vec{w}\}$ consists of 1 linearly independent vector in im T, which is of dimension 1 , and so it is a basis.
8. Find inverse of the matrix A if possible

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 2 & 4 \\
1 & 3 & -3
\end{array}\right] .
$$

Solution

$$
\left[\begin{array}{ccc}
9 & -3 / 2 & -5 \\
-5 & 1 & 3 \\
-2 & 1 / 2 & 1
\end{array}\right]
$$

9. Let $\mathcal{B}=\left\{1, x, x^{2}\right\}, \mathcal{C}=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$ to be the bases of the space of polynomials of degree smaller than 2 .
(i) Let us define the linear operators

$$
T\left([\vec{y}]_{\mathcal{B}}\right)=[\vec{y}]_{\mathcal{C}}, S\left([\vec{y}]_{\mathcal{C}}\right)=[\vec{x}]_{\mathcal{B}} .
$$

Find the matrices for S and T.
(ii) Then find the coordinates $[p]_{\mathcal{C}}$ for $p=1+2 x-x^{2}$

Solution

(i)

$$
S=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

$$
T=\left([1]_{\mathcal{C} \rightarrow \mathcal{B}}\right)^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2
\end{array}\right] .
$$

(ii)

$$
[p]_{\mathcal{C}}=T[p]_{\mathcal{B}}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]
$$

