235 Midterm 2 review questions

November 9, 2016
(1) Let $A=\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 3 & 5 \\ 4 & 1 & 1\end{array}\right]$.
(a) Compute the determinant of A.
(b) Is A invertible?
(2) (a) Find the determinant of the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 2 & 3 & 4 \\
5 & 4 & 3 & 2 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

(b) What is the determinant of the matrix obtained by interchanging row 1 and row 2 of A ? Justify your answer.
(c) What is the determinant of the matrix obtained by interchanging row 2 and row 3 of A ? Justify your answer.
(d) What is the determinant of the matrix obtained by multiplying row 3 of A by the scalar 10? Justify your answer.
(e) What is the determinant of the matrix obtained by replacing row 1 of A with (row 1) -47 (row 2)? Justify your answer.
(3) (a) Compute the volume of the parallelepiped S in \mathbb{R}^{3} which has one vertex at the origin and adjacent vertices at $(2,0,1),(0,1,1)$ and $(1,3,2)$.
(b) Let T_{A} be the linear transformation of \mathbb{R}^{3} with standard matrix

$$
A=\left[\begin{array}{ccc}
1 & 4 & 0 \\
0 & 3 & 7 \\
0 & 0 & -1
\end{array}\right]
$$

Using your answer to part (a) or otherwise, find the volume of the image under T_{A} of the parallelepiped S.
(4) Justify your answers carefully.
(a) Let $H=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x, y\right.$ in \mathbb{R} and $\left.y=x^{2}\right\}$. Is H a subspace of \mathbb{R}^{2} ?
(b) Let \mathbb{P}_{2} be the vector space of polynomials in the variable t of degree ≤ 2. Let $K=\left\{a t^{2}+b t+c \mid a, b, c\right.$ in \mathbb{R} and $\left.a+b=1\right\}$. Is K a subspace of \mathbb{P}_{2} ?
(5) For each of the following functions, determine if they are linear transformations
(a) $T: \mathbb{P}_{3} \rightarrow \mathbb{R}^{2}$ given by $T(\mathbf{p}(t))=\left[\begin{array}{l}\mathbf{p}(1) \\ \mathbf{p}(2)\end{array}\right]$.
(b) $U: \mathbb{R}^{2} \rightarrow \mathbb{P}_{2}$ given by $U\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=a^{2} t+b$.
(6) Let $H=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x, y, z\right.$ in \mathbb{R} and $\left.x+2 y+7 z=0\right\}$.
(a) Show that H is a subspace of \mathbb{R}^{3}.
(b) Find a basis of H.
(c) What is the dimension of H ?
(7) Let $H=\left\{\left.\left[\begin{array}{c}a+b+3 c \\ a+2 c+2 d \\ b+c \\ a+2 c+d\end{array}\right] \right\rvert\, a, b, c, d\right.$ in $\left.\mathbb{R}\right\} \subset \mathbb{R}^{4}$.
(a) Show that H is a subspace of \mathbb{R}^{4}.
(b) Find a basis of H.
(c) What is the dimension of H ?
(8) Let $A=\left[\begin{array}{lllll}1 & 3 & 2 & 7 & 2 \\ 1 & 3 & 1 & 2 & 3 \\ 2 & 6 & 3 & 9 & 5\end{array}\right]$.
(a) Find a basis of the null space of A.
(b) Find a basis of the column space of A.
(9) Let

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] .
$$

(a) Show that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis of \mathbb{R}_{3}.
(b) Find the vector \mathbf{v} in \mathbb{R}^{3} with \mathcal{B}-coordinate vector $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$.
(c) Find the \mathcal{B}-coordinate vector $[\mathbf{w}]_{\mathcal{B}}$ of the vector $\mathbf{w}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$.
(10) Let \mathbb{P}_{2} be the vector space of polynomials in the variable t of degree ≤ 2. Let $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ be the following polynomials in \mathbb{P}_{2} :

$$
\mathbf{b}_{1}(t)=1+2 t+t^{2}, \quad \mathbf{b}_{2}(t)=1+3 t+4 t^{2}, \quad \mathbf{b}_{3}(t)=1+4 t+8 t^{2} .
$$

(a) Show that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis of \mathbb{P}_{2}.
(b) Let \mathbf{p} be the polynomial $\mathbf{p}(t)=t^{2}$ in \mathbb{P}_{2}. Find the \mathcal{B}-coordinate vector $[\mathbf{p}]_{\mathcal{B}}$ of \mathbf{p}.

