Name: \qquad
ID Number: \qquad
Section Number: \qquad

Section	Instructor	Day/Time	Section	Instructor	Day/Time
1	Zhao	MWF 10:10	9	Sunukjian	TuThu 11:30
2	Zhao	MWF 9:05	10	Benincasa	TuThu 4:00
3	Nikolaou	MWF 11:15	11	Farelli	MWF 11:15
4	Nikolaou	MWF 12:20	12	Bates	MWF 12:20
5	Wen	MW 2:30	13	Hart	MWF 1:25
6	Wen	MW 4:00	15	Le	TuThu 11:30
7	Yaping	TuThu 8:30	16	Johnson	TuThu 1:00
8	Lowell	TuThu 10:00			

- No calculator, papers, phones, smart watches, or notes may be used.
- Please don't just give an answer. Clearly explain how you get it, providing appropriate mathematical details.
- This is a 2 hour exam.

Question	Grade		
MC Total			
6	$\\|$		
7	$\\|$		
8	$\\|$		
9	$\\|$		
10	$\\|$		
Total (out of 100)	$\\|$		

Mutiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

1. [5 points] Which of the following integrals can be represented with this substitution: $\int e^{u^{2}} d u$?
I. $\int e^{\tan ^{2}(x)} \sec ^{2}(x) d x$
II. $\int e^{\cos ^{2}(x)} d x$
III. $\int e^{(x-1)^{2}} d x$
IV. $2 \int e^{x^{2}} d x$
(A) III
(B) I and III
(C) III and IV
(D) I, II, III, and IV
2. [5 points] Which of the following integrals calculates the area enclosed by the two functions in the graph below from $0 \leq x \leq \pi$?

(A) $\int_{-1}^{2}\left(f^{-1}(y)-g^{-1}(y)\right) d y$
(B) $\int_{0}^{\pi}(f(x)-g(x)) d x$
(C) $\int_{0}^{\pi / 3}(g(x)-f(x)) d x+\int_{\pi / 3}^{\pi}(f(x)-g(x)) d x$
(D) $\int_{0}^{\pi / 3}(f(x)-g(x)) d x+\int_{\pi / 3}^{\pi}(g(x)-f(x)) d x$
3. [5 points] Which of the following is equivalent to $\int \frac{\sqrt{x^{2}-25}}{x} d x$?
(A) $5 \int \tan ^{2}(\theta) d \theta$
(B) $25 \int \sec ^{2}(\theta) d \theta$
(C) $\int \sin ^{2}(\theta) d \theta$
(D) $5 \int \sin (\theta) d \theta$
4. [5 points] Find the derivative of the following function:

$$
f(x)=\int_{\ln (3)}^{x^{2}} t \cdot g(t) d t
$$

(A) $x^{2} g\left(x^{2}\right)-\ln (3) g(\ln (3))$
(B) $2 x^{3} g\left(x^{2}\right)$
(C) $2 x^{3} g\left(x^{2}\right)-\frac{1}{3} \ln (3) g(\ln (3))$
(D) $\frac{x}{2} g\left(x^{2}\right)$
5. [5 points] Which of the following integrals would be solved using a usubstitution?
(A) $\int \sin (\theta) e^{\theta} d \theta$
(B) $\int \frac{3}{\sqrt{x^{2}-7}} d x$
(C) $\int\left(\frac{\sqrt{x^{3}}+7 x^{2}+x}{x}\right) d x$
(D) $\int \sin ^{2}(x) \cos ^{3}(x) d x$

Please fill in your letter answer for questions 1-5 below:
(1) \qquad 2) --------
(3)
(4) \qquad

Free Response Portion: Show all work for each of the following questions. Partial credit may be awarded for questions 6-10.
6. The velocity function of a particle moving along a line is given by $v(t)=2 t-t^{2}$.
(a) [5 points] Find the total displacement of the particle during the interval $0 \leq t \leq 4$.
(b) [10 points] Find the total distance traveled by the particle during the interval $0 \leq t \leq 4$.
7. Let \mathcal{R} be the region enclosed by the curves $y=\sqrt{x}$ and $y=\frac{1}{2} x$.
(a) [5 points] Sketch the region \mathcal{R}. Find and label the intersection points.
(b) [5 points] Find the area enclosed by the two functions.
(c) [10 points] Find the volume of the solid obtained by rotating \mathcal{R} around the \mathbf{y} axis.
8. Evaluate the integrals.
(a) [5 points] $\int 7 x \cos (3 x) d x$
(b) [10 points] $\int \frac{\sqrt{x^{2}+9}}{x^{4}} d x$
9. Evaluate the integrals.
(a) $[5$ points $] \int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x$.
(b) [5 points $] \int \tan ^{-1}(x) d x$
10. Evaluate the integrals.
(a) [5 points] $\int \sin ^{5}(\theta) \cos ^{6}(\theta) d \theta$
(b) [10 points $] \int_{0}^{\pi / 2} \cos (\theta) \sin (\sin (\theta)) \mathrm{d} \theta$

This page is left blank for additional work.

