Exam 1

Name: \_\_\_\_\_

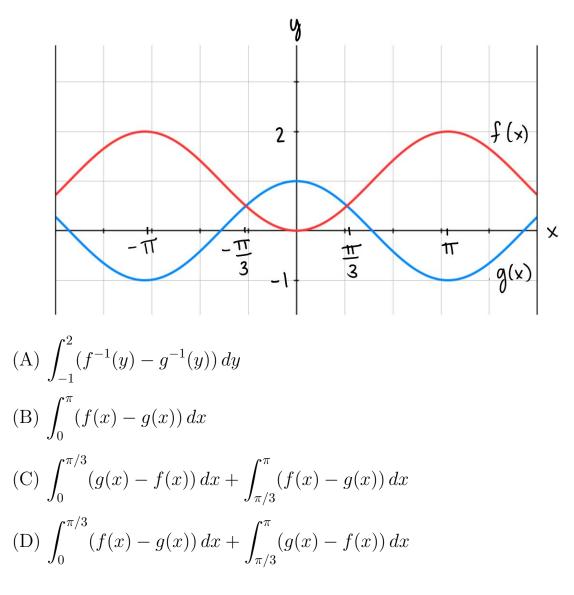
ID Number: \_\_\_\_\_

Section Number: \_\_\_\_\_

| Section | Instructor | Day/Time    | Section | Instructor | Day/Time    |
|---------|------------|-------------|---------|------------|-------------|
| 1       | Zhao       | MWF 10:10   | 9       | Sunukjian  | TuThu 11:30 |
| 2       | Zhao       | MWF 9:05    | 10      | Benincasa  | TuThu 4:00  |
| 3       | Nikolaou   | MWF 11:15   | 11      | Farelli    | MWF 11:15   |
| 4       | Nikolaou   | MWF 12:20   | 12      | Bates      | MWF 12:20   |
| 5       | Wen        | MW 2:30     | 13      | Hart       | MWF 1:25    |
| 6       | Wen        | MW 4:00     | 15      | Le         | TuThu 11:30 |
| 7       | Yaping     | TuThu 8:30  | 16      | Johnson    | TuThu 1:00  |
| 8       | Lowell     | TuThu 10:00 |         |            |             |

- No calculator, papers, phones, smart watches, or notes may be used.
- Please don't just give an answer. Clearly explain how you get it, providing appropriate mathematical details.
- This is a 2 hour exam.

| Question           | Grade |  |
|--------------------|-------|--|
| MC Total           |       |  |
| 6                  |       |  |
| 7                  |       |  |
| 8                  |       |  |
| 9                  |       |  |
| 10                 |       |  |
| Total (out of 100) |       |  |


Mutiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

1. [5 points] Which of the following integrals can be represented with this substitution:  $\int e^{u^2} du$ ? I.  $\int e^{\tan^2(x)} \sec^2(x) dx$  II.  $\int e^{\cos^2(x)} dx$ 

III. 
$$\int e^{(x-1)^2} dx$$
 IV.  $2 \int e^{x^2} dx$ 

(A) III (B) I and III (C) III and IV (D) I, II, III, and IV

2. [5 points] Which of the following integrals calculates the area enclosed by the two functions in the graph below from  $0 \le x \le \pi$ ?



3. [5 points] Which of the following is equivalent to  $\int \frac{\sqrt{x^2 - 25}}{x} dx$ ?

[5 points] Which of the following  
(A) 
$$5 \int \tan^2(\theta) d\theta$$
  
(B)  $25 \int \sec^2(\theta) d\theta$   
(C)  $\int \sin^2(\theta) d\theta$ 

(C) 
$$\int \sin^2(\theta) d\theta$$
  
(D)  $5 \int \sin(\theta) d\theta$ 

4. [5 points] Find the derivative of the following function:

$$f(x) = \int_{\ln(3)}^{x^2} t \cdot g(t) \, dt$$

(A) 
$$x^2 g(x^2) - \ln(3)g(\ln(3))$$
  
(B)  $2x^3 g(x^2)$   
(C)  $2x^3 g(x^2) - \frac{1}{3}\ln(3)g(\ln(3))$   
(D)  $\frac{x}{2}g(x^2)$ 

5. [5 points] Which of the following integrals would be solved using a usubstitution?

(A) 
$$\int \sin(\theta) e^{\theta} d\theta$$
 (B)  $\int \frac{3}{\sqrt{x^2 - 7}} dx$   
(C)  $\int \left(\frac{\sqrt{x^3 + 7x^2 + x}}{x}\right) dx$  (D)  $\int \sin^2(x) \cos^3(x) dx$ 

Please fill in your letter answer for questions 1-5 below:

 $(1) \dots (2) \dots (3) \dots (4) \dots (5) \dots$ 

**Free Response Portion:** Show all work for each of the following questions. Partial credit may be awarded for questions 6-10.

- 6. The velocity function of a particle moving along a line is given by  $v(t) = 2t t^2$ .
  - (a) [5 points] Find the total displacement of the particle during the interval  $0 \le t \le 4$ .

(b) [10 points] Find the total distance traveled by the particle during the interval  $0 \le t \le 4$ .

- 7. Let  $\mathcal{R}$  be the region enclosed by the curves  $y = \sqrt{x}$  and  $y = \frac{1}{2}x$ .
  - (a) [5 points] Sketch the region  $\mathcal{R}$ . Find and label the intersection points.

(b) [5 points] Find the area enclosed by the two functions.

(c) [10 points] Find the volume of the solid obtained by rotating  $\mathcal{R}$  around the **y** axis.

8. Evaluate the integrals.

(a) [5 points] 
$$\int 7x \cos(3x) dx$$

(b) [10 points] 
$$\int \frac{\sqrt{x^2 + 9}}{x^4} dx$$

9. Evaluate the integrals.

(a) [5 points] 
$$\int_{1}^{2} \frac{e^{1/x}}{x^2} dx.$$

(b) [5 points] 
$$\int \tan^{-1}(x) dx$$

10. Evaluate the integrals.

(a) [5 points] 
$$\int \sin^5(\theta) \cos^6(\theta) d\theta$$

(b) [10 points] 
$$\int_0^{\pi/2} \cos(\theta) \sin(\sin(\theta)) d\theta$$

This page is left blank for additional work.