Name: \qquad
ID Number: \qquad
Section Number: \qquad

Section	Instructor	Day/Time	Section	Instructor	Day/Time
1	Farelli	MWF 10:10	9	Benincasa	TuThu 1:00
2	Farelli	MWF 9:05	10	Benincasa	TuThu 2:30
3	Clark	MWF 11:15	11	Buskin	MWF 10:10
4	Clark	MWF 12:20	12	Yaping	MWF 12:20
5	Brown	MW 2:30	13	Yaping	MWF 1:25
6	Brown	MW 4:00	15	Buckman	TuThu 11:30
7	Duanmu	TuThu 8:30	16	Wen	TuThu 1:00
8	Oloo	TuThu 10:00	17	Wen	TuThu 2:30

- No calculator, papers, or notes may be used.
- Please don't just give an answer. Clearly explain how you get it, providing appropriate mathematical details.
- This is a 2 hour exam.

Question	Grade
MC Total	
6	
7	
8	
9	
10	
Total (out of 100)	

Mutiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

1. [5 points] Which of the following integrals calculates the area of the shaded region?

(A) $\int_{-2}^{4}(g(x)-f(x)) d x$
(C) $\int_{-1}^{3}(g(x)-f(x)) d x$
(B) $\int_{-3}^{4}(f(y)-g(y)) d y$
(D) $\int_{-3}^{4}(g(x)-f(x)) d x$
2. [5 points] Which of the following integrals represent the volume of the solid obtained by rotating the area enclosed by $y=\frac{1}{x}, y=0, x=1, x=3$ around the line $y=-1$.
(A) $\pi \int_{1}^{3}\left(\frac{1}{x^{2}}-1\right) d x$
(B) $\pi \int_{1 / 3}^{1}\left(\frac{1}{y^{2}}+\frac{2}{y}+1\right) d y$
(C) $\pi \int_{1 / 3}^{1}\left(\frac{1}{y^{2}}+\frac{2}{y}\right) d y$
(D) $\pi \int_{1}^{3}\left(\frac{1}{x^{2}}+\frac{2}{x}\right) d x$
3. [5 points] Let $h(x)=\int_{5}^{x^{3}-2 x} g(t) d t$. Given the following information about $g(x)$ and $g^{\prime}(x)$, find $h^{\prime}(2)$.

x	0	2	4
$g(x)$	5	1	7
$g^{\prime}(x)$	6	-3	10

(A) 70
(B) 7
(C) -3
(D) -21
4. [5 points] Evaluate the following derivative. $\frac{d}{d x} \int_{0}^{\ln (2)} e^{x^{2}} d x$.
(A) $e^{(\ln (2))^{2}}-e^{0}$
(B) $e^{(\ln (2))^{2}}$
(C) 0
(D) $\ln (2)$
5. [5 points] The population of a town in 1990 is 14,503 people. The rate that the population is changing, measured in people per year, is represented by $R(t)$ where t represents years after 1990. Which of the following integrals represents the total change in population from 1990 to 2007 ?
(A) $14,503+\int_{0}^{17} R(t) d t$
(C) $\int_{1990}^{2007} R(t) d t$
(B) $14,503+\int_{1990}^{2007} R(t) d t$
(D) $\int_{0}^{17} R(t) d t$

Please fill in your letter answer for questions 1-5 below:
(1) \qquad (2) \qquad (3) \qquad
\qquad (5) -------

Free Response Portion: Show all work for each of the following questions. Partial credit may be awarded for questions 6-10.
6. Consider the region \mathbb{R} enclosed by curves $y=x^{2}$ and $y=\sqrt{x}$.
(a) [5 points] Sketch the region \mathbb{R}. Find and label the intersection points.
(b) [5 points] Find the area of the region in part (a).
(c) [10 points] Find the volume of the solid obtained by rotating \mathbb{R} around the \mathbf{x} axis.
7. Evaluate the following integral.
(a) [5 points] $\int t^{5}\left(1+t^{3}\right)^{49} d t$
(b) $[5$ points $] \int \frac{\sin (x)+\tan (x)}{\cos ^{2}(x)} d x$
8. Evaluate the following integrals.
(a) [5 points] $\int_{1}^{2} x^{5 / 2} \ln (x) d x$
(b) $[10$ points $] \int \frac{1}{\sqrt{16+4 x^{2}}} d x$
9. Evaluate the following integrals.
(a) [5 points] $\int_{0}^{\pi / 3} \sin ^{2}(\theta) \cos ^{3}(\theta) d \theta$
(b) $[5$ points $] \int \frac{\sin (\ln (x))}{3 x} d x$
10. Evaluate the following integrals.
(a) [10 points] $\int x^{2} \cos (2 x) d x$
(b) $[10$ points $] \int \frac{1+2 x}{1+x^{2}} d x$

This page is intentionally left blank for additional work.

