Name: \qquad
ID Number: \qquad
Section Number: \qquad

Section	Instructor	Day/Time	Section	Instructor	Day/Time
1	Zhao	MWF 10:10	9	Sunukjian	TuThu 11:30
2	Zhao	MWF 9:05	10	Benincasa	TuThu 4:00
3	Nikolaou	MWF 11:15	11	Farelli	MWF 11:15
4	Nikolaou	MWF 12:20	12	Bates	MWF 12:20
5	Wen	MW 2:30	13	Hart	MWF 1:25
6	Wen	MW 4:00	15	Le	TuThu 11:30
7	Yaping	TuThu 8:30	16	Johnson	TuThu 1:00
8	Lowell	TuThu 10:00			

- No calculators, papers, or notes may be used.
- Please don't just give an answer. Clearly explain how you get it, providing appropriate mathematical details. An answer with no supporting work will be awarded zero points.
- This is a 2 hour exam.

Question	Grade		
MC Total (Out of 25)			
6 (Out of 20)	a.	$\\| \mathrm{b}$.	
7 (Out of 15)	a.	$\\| \mathrm{b}$.	
8 (Out of 20)	a.	$\\| \mathrm{b}$.	
9 (Out of 20$)$	a.	$\\| \mathrm{b}$.	
Total (Out of 100$)$			

Mutiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

1. [5 points] Find a polar equation for the curve represented by the Cartesian equation $x=6$.
(A.) $r=6 \tan \theta$
(B.) $r=6$
(C.) $r=6 \cos \theta$
(D.) $r=6 \sec \theta$
2. [5 points] Which of the following is the radius of convergence for the power series?

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n^{2} 5^{n}}
$$

(A) $\frac{1}{5}$
(B) 1
(C) 5
(D) ∞
3. [5 points] For which x values does the following series converge?

$$
\sum_{n=1}^{\infty} \frac{x^{n-1}}{3^{n}}
$$

(A) $-3<x<3$
(B) $-\frac{1}{3}<x<\frac{1}{3}$
(C) $-3 \leq x \leq 3$
(D) $-\frac{1}{3} \leq x \leq \frac{1}{3}$
4. [5 points] Consider the integral $\int \ln (2 x) d x$. Which of the following is true?
(A) This integral does not exist.
(B) This integral can be found using integration by parts.
(C) This integral can be found using u-substitution.
(D) This integral can be found using trigonmetric substitution.
5. [5 points] Which of the following is a Polar representation of the Cartesian coordinate $(\sqrt{3},-1)$?
(A) $\left(2,-\frac{\pi}{3}\right)$
(B) $\left(2, \frac{5 \pi}{6}\right)$
(C) $\left(2, \frac{5 \pi}{3}\right)$
(D) $\left(2,-\frac{\pi}{6}\right)$

Please fill in your letter answer for questions 1-5 below:
(1)
(2)
(3) \qquad
(5) \qquad

Free Response Portion: Show all work for each of the following questions. Partial credit may be awarded for questions 6-9.

6 (a). [10 points] Evaluate the integral.

$$
\int_{0}^{1} x^{3}\left(1+x^{4}\right)^{4} d x
$$

6 (b). [10 points] Represent the following function as a power series. Express your answer in summation notation and simplify completely within the summation.

$$
f(x)=\frac{x^{2}}{\left(1+4 x^{3}\right)^{2}}
$$

7 (a). [10 points] Find the Taylor series for the function below. Express your answer in summation notation and simplify completely within the summation.

$$
f(x)=\ln (1+x)
$$

Centered at $a=1$

7 (b). [5 points] The Maclaurin series of $\tan ^{-1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$. Determine the Maclaurin series for

$$
f(x)=9 x \tan ^{-1}\left(4 x^{3}\right)
$$

Express your answer in summation notation and simplify completely within the summation.

8 (a). [10 points] Find the radius and interval of convergence of the series. Justify any test you use, and be sure to verify any necessary conditions.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(5 x)^{n}}{3 \sqrt{n}+2}
$$

8 (b). [10 points] Consider the polar equation $r=\cos (5 \theta)$ given in the graph below.

Calculate the area enclosed in one loop of the curve. Mathematically justify how you find the integral bounds.

9 (a). [10 points] Find the exact length of the parametric curve below.

$$
\begin{aligned}
& x=\frac{1}{2} t^{2} \\
& y=\frac{1}{3}(2 t+1)^{3 / 2} \\
& 0 \leq t \leq 4
\end{aligned}
$$

9 (b). [10 points] Find the equation of the line tangent to the parametric curve given below at the given point. Express your answer as $y=f(x)$.

$$
\begin{aligned}
x & =\sec (t) \\
y & =\tan (t) \\
t & =\frac{\pi}{6}
\end{aligned}
$$

This page is intentionally left blank for additional work.

