Name: _____

ID Number: _____

Section Number: _____

Section	Instructor	Day/Time	Section	Instructor	Day/Time
1	Farelli	MWF 10:10	9	Benincasa	TuThu 1:00
2	Farelli	MWF 9:05	10	Benincasa	TuThu 2:30
3	Clark	MWF 11:15	11	Buskin	MWF 10:10
4	Clark	MWF 12:20	12	Yaping	MWF 12:20
5	Brown	MW 2:30	13	Yaping	MWF 1:25
6	Brown	MW 4:00	15	Buckman	TuThu 11:30
7	Duanmu	TuThu 8:30	16	Wen	TuThu 1:00
8	Oloo	TuThu 10:00	17	Wen	TuThu 2:30

- No calculators, papers, or notes may be used.
- Please don't just give an answer. Clearly explain how you get it, providing appropriate mathematical details.
- This is a 2 hour exam.

Question	Grade
MC Total	
6	
7	
8	
9	
Total (out of 100)	

Mutiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

- 1. [5 points] Find the Cartesian coordinate of the polar coordinate $(r, \theta) = (-\sqrt{2}, 5\pi/4).$
 - (a) (1,1)
 - (b) (-1, -1)
 - (c) (1, -1)
 - (d) (-1, 1)
- 2. [5 points] Which is not a possible result for a power series?

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

- (a) the series converges if x = a
- (b) the series converges for all x
- (c) the series converges when $|x a| < \mathbb{R}$
- (d) the series converges when $|x a| > \mathbb{R}$

3. [5 points] Find the interval of convergence of the power series:

$$\sum_{n=1}^{\infty} n! (3x-1)^n$$

- (a) $I = \{0\}$
- (b) $I = \left(-\frac{1}{3}, \frac{1}{3}\right]$
- (c) $I = \emptyset$
- (d) $I = \{\frac{1}{3}\}$
- 4. [5 points] Eliminate the parameter to find the Cartesian equation for $x = 5\sin(t), y = 2\cos(t).$
 - (a) $\frac{x^2}{4} + \frac{y^2}{25} = 1$ (b) $\frac{x^2}{25} + \frac{y^2}{4} = 1$ (c) $x^2 + y^2 = 1$ (d) $x^2 + y^2 = 10$
- 5. [5 points] Convert the polar equation $3r\cos(\theta) + 4r\sin(\theta) = 1$ into a Cartesion equation.
 - (a) $3x + 4y = x^2 + y^2$ (b) $\frac{x}{3} + \frac{y}{4} = 1$ (c) 3x + 4y = 1(d) 3y + 4x = 1

Please fill in your letter answer for questions 1-5 below:

 $(1) \dots (2) \dots (3) \dots (4) \dots (5) \dots$

Free Response Portion: Show all work for each of the following questions. Partial credit may be awarded for questions 6-9. You will receive no credit for an answer without supporting work.

6. (a) [5 points] Evaluate the integral.

 $\int x^2 \sin(x^3) dx$

(b) [5 points] The Maclaurin series of $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. Determine the Maclaurin series for

$$f(x) = 2x^3 \sin(2\pi x^2)$$

Simplify completely by combining all terms within the summation.

7. (a) [10 points] Find the interval of convergence of the series. Justify any test you use, and be sure to verify any necessary conditions.

$$\sum_{n=0}^{\infty} (-1)^n \frac{(5x-3)^n}{3n+2}$$

(b) [10 points] Represent the following function as a power series. Simplify completely by combining all terms within the summation.

$$f(x) = \frac{x^6}{(1 - 4x)^2}$$

8. Consider the curve given by the parametric equations

$$x = e^{\sin(t)} \qquad y = \cos(t) + t - \pi$$
$$0 \le t \le 2\pi$$

(a) [10 points] Find the equation of the tangent line to the curve at the point (1, -1).

(b) [10 points] Find all the points where there is a vertical tangent line on the interval $0 \le t \le 2\pi$.

9. (a) [10 points] Find the area enclosed in all loops of the function $r = \cos(2\theta)$ given the graph of the function below. Mathematically justify how you find the integral bounds.

(b) [10 points] Find the slope of the tangent line for the function in part (a) $r = \cos(2\theta)$ at $\theta = \pi/4$.

(c) [5 points] Find the exact length of the curve $r = e^{3\theta}$ from $\theta = 0$ to $\theta = 2$.

This page is intentionally left blank for additional work.