Name: \qquad
ID Number: \qquad
Section Number: \qquad

Section	Instructor	Day/Time	Section	Instructor	Day/Time
1	Farelli	MWF 10:10	9	Benincasa	TuThu 1:00
2	Farelli	MWF 9:05	10	Benincasa	TuThu 2:30
3	Clark	MWF 11:15	11	Buskin	MWF 10:10
4	Clark	MWF 12:20	12	Yaping	MWF 12:20
5	Brown	MW 2:30	13	Yaping	MWF 1:25
6	Brown	MW 4:00	15	Buckman	TuThu 11:30
7	Duanmu	TuThu 8:30	16	Wen	TuThu 1:00
8	Oloo	TuThu 10:00	17	Wen	TuThu 2:30

- No calculators, papers, or notes may be used.
- Please don't just give an answer. Clearly explain how you get it, providing appropriate mathematical details.
- This is a 2 hour exam.

Question	Grade			
MC Total	$\\|$			
6	$\\|$			
7	$\\|$			
8	$\\|\quad\\|$			
9	$\\|$			
Total (out of 100)				

Mutiple Choice Section: Choose the one option that best answers the question. There is no partial credit for questions 1-5.

1. [5 points] Find the Cartesian coordinate of the polar coordinate $(r, \theta)=(-\sqrt{2}, 5 \pi / 4)$.
(a) $(1,1)$
(b) $(-1,-1)$
(c) $(1,-1)$
(d) $(-1,1)$
2. [5 points] Which is not a possible result for a power series?

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

(a) the series converges if $x=a$
(b) the series converges for all x
(c) the series converges when $|x-a|<\mathrm{R}$
(d) the series converges when $|x-a|>\mathrm{R}$
3. [5 points] Find the interval of convergence of the power series:

$$
\sum_{n=1}^{\infty} n!(3 x-1)^{n}
$$

(a) $I=\{0\}$
(b) $I=\left(-\frac{1}{3}, \frac{1}{3}\right]$
(c) $I=\emptyset$
(d) $I=\left\{\frac{1}{3}\right\}$
4. [5 points] Eliminate the parameter to find the Cartesian equation for $x=5 \sin (t), y=2 \cos (t)$.
(a) $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
(b) $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
(c) $x^{2}+y^{2}=1$
(d) $x^{2}+y^{2}=10$
5. [5 points] Convert the polar equation $3 r \cos (\theta)+4 r \sin (\theta)=1$ into a Cartesion equation.
(a) $3 x+4 y=x^{2}+y^{2}$
(b) $\frac{x}{3}+\frac{y}{4}=1$
(c) $3 x+4 y=1$
(d) $3 y+4 x=1$

Please fill in your letter answer for questions 1-5 below:
(1) -------
(2) (2) -------
(3) -------
(4)
(5) \qquad

Free Response Portion: Show all work for each of the following questions. Partial credit may be awarded for questions 6-9. You will receive no credit for an answer without supporting work.
6. (a) [5 points] Evaluate the integral.

$$
\int x^{2} \sin \left(x^{3}\right) d x
$$

(b) [5 points] The Maclaurin series of $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$. Determine the Maclaurin series for

$$
f(x)=2 x^{3} \sin \left(2 \pi x^{2}\right)
$$

Simplify completely by combining all terms within the summation.
7. (a) [10 points] Find the interval of convergence of the series. Justify any test you use, and be sure to verify any necessary conditions.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(5 x-3)^{n}}{3 n+2}
$$

(b) [10 points] Represent the following function as a power series. Simplify completely by combining all terms within the summation.

$$
f(x)=\frac{x^{6}}{(1-4 x)^{2}}
$$

8. Consider the curve given by the parametric equations

$$
\begin{gathered}
x=e^{\sin (t)} \quad y=\cos (t)+t-\pi \\
0 \leq t \leq 2 \pi
\end{gathered}
$$

(a) [10 points] Find the equation of the tangent line to the curve at the point $(1,-1)$.
(b) [10 points] Find all the points where there is a vertical tangent line on the interval $0 \leq t \leq 2 \pi$.
9. (a) [10 points] Find the area enclosed in all loops of the function $r=\cos (2 \theta)$ given the graph of the function below. Mathematically justify how you find the integral bounds.

(b) [10 points] Find the slope of the tangent line for the function in part (a) $r=\cos (2 \theta)$ at $\theta=\pi / 4$.
(c) [5 points] Find the exact length of the curve $r=e^{3 \theta}$ from $\theta=0$ to $\theta=2$.

This page is intentionally left blank for additional work.

