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CHAPTER 1

Introduction

This two-volume book will provide the analog, in quantum field theory, of the
deformation quantization approach to quantum mechanics. In this introduction, we
will start by recalling how deformation quantization works in quantum mechanics.

The collection of observables in a quantum mechanical system forms an asso-
ciative algebra. The observables of a classical mechanical system form a Poisson
algebra. In the deformation quantization approach to quantum mechanics, one
starts with a Poisson algebra A and attempts to construct an associative algebra
A4, which is an algebra flat over the ring C[[#]], together with an isomorphism of
associative algebras A?/h = A, In addition, if a,b € A, and E,E are any lifts of
a, b to A4, then

1~ .
lim —[@, b] = {a, b} € A°.
=0 h

Thus, A is recovered in the i — 0 limit, i.e., the classical limit.
We will describe an analogous approach to studying perturbative quantum field
theory. In order to do this, we need to explain the following.

o The structure present on the collection of observables of a classical
field theory. This structure is the analog, in the world of field theory, of
the commutative algebra that appears in classical mechanics. We call
this structure a commutative factorization algebra.

o The structure present on the collection of observables of a quantum
field theory. This structure is that of a factorization algebra. We view
our definition of factorization algebra as a differential geometric ana-
log of a definition introduced by Beilinson and Drinfeld. However,
the definition we use is very closely related to other definitions in the
literature, in particular to the Segal axioms.

o The additional structure on the commutative factorization algebra as-
sociated to a classical field theory that makes it “want” to quantize.
This structure is the analog, in the world of field theory, of the Poisson
bracket on the commutative algebra of observables.

o The deformation quantization theorem we prove. This states that, pro-
vided certain obstruction groups vanish, the classical factorization al-
gebra associated to a classical field theory admits a quantization. Fur-
ther, the set of quantizations is parametrized, order by order in %, by
the space of deformations of the Lagrangian describing the classical
theory.
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This quantization theorem is proved using the physicists’ techniques of perturba-
tive renormalization, as developed mathematically in Costello (2011b). We claim
that this theorem is a mathematical encoding of the perturbative methods developed
by physicists.

This quantization theorem applies to many examples of physical interest, in-
cluding pure Yang-Mills theory and o-models. For pure Yang-Mills theory, it is
shown in Costello (2011b) that the relevant obstruction groups vanish and that the
deformation group is one-dimensional; thus there exists a one-parameter family of
quantizations. In Li and Li (2016), the topological B-model with target a complex
manifold X is constructed; the obstruction to quantization is that X be Calabi-Yau.
Li and Li show that the observables and correlations functions recovered by their
quantization agree with well-known formulas. In Grady et al. (n.d.), Grady, Li, and
Li describe a 1-dimensional o-model with target a smooth symplectic manifold
and show how it recovers Fedosov quantization. Other examples are considered in
Gwilliam and Grady (2014), Costello (2010, 2011a), and Costello and Li (2011).

We will explain how (under certain additional hypotheses) the factorization
algebra associated to a perturbative quantum field theory encodes the correlation
functions of the theory. This fact justifies the assertion that factorization algebras
encode a large part of quantum field theory.

This work is split into two volumes. Volume 1 develops the theory of fac-
torization algebras, and explains how the simplest quantum field theories — free
theories — fit into this language. We also show in this volume how factorization
algebras provide a convenient unifying language for many concepts in topological
and quantum field theory. Volume 2, which is more technical, derives the link be-
tween the concept of perturbative quantum field theory as developed in Costello
(2011b) and the theory of factorization algebras.

1. The motivating example of quantum mechanics

The model problems of classical and quantum mechanics involve a particle
moving in some Euclidean space R” under the influence of some fixed field. Our
main goal in this section is to describe these model problems in a way that makes
the idea of a factorization algebra (Section 1) emerge naturally, but we also hope
to give mathematicians some feeling for the physical meaning of terms like “field”
and “observable.” We will not worry about making precise definitions, since that’s
what this book aims to do. As a narrative strategy, we describe a kind of cartoon of
a physical experiment, and we ask that physicists accept this cartoon as a friendly
caricature elucidating the features of physics we most want to emphasize.

1.1. A particle in a box. For the general framework we want to present, the
details of the physical system under study are not so important. However, for con-
creteness, we will focus attention on a very simple system: that of a single particle
confined to some region of space. We confine our particle inside some box and
occasionally take measurements of this system. The set of possible trajectories of
the particle around the box constitute all the imaginable behaviors of this particle;
we might describe this space of behaviors mathematically as Maps(/, Box), where
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I C R denotes the time interval over which we conduct the experiment. We say the
set of possible behaviors forms a space of fields on the timeline of the particle.

The behavior of our theory is governed by an action functional, which is a
function on Maps(/, Box). The simplest case typically studied is the massless free
field theory, whose value on a trajectory f : I — Box is

S() = f . fo

Here we use (—, —) to denote the usual inner product on R”, where we view the box
as a subspace of R”, and f to denote the second derivative of f in the time variable
t.

The aim of this section is to outline the structure one would expect the observ-
ables — that is, the possible measurements one can make of this system — should
satisfy.

1.2. Classical mechanics. Let us start by considering the simpler case where
our particle is treated as a classical system. In that case, the trajectory of the particle
is constrained to be in a solution to the Euler-Lagrange equations of our theory,
which is a differential equation determined by the action functional. For example,
if the action functional governing our theory is that of the massless free theory,
then amap f : I — Box satisfies the Euler-Lagrange equation if it is a straight line.
(Since we are just trying to provide a conceptual narrative here, we will assume
that Box becomes all of R” so that we do not need to worry about what happens at
the boundary of the box.)

We are interested in the observables for this classical field theory. Since the
trajectory of our particle is constrained to be a solution to the Euler-Lagrange equa-
tion, the only measurements one can make are functions on the space of solutions
to the Euler-Lagrange equation.

If U c R is an open subset, we will let Fields(U) denote the space of fields on
U, that is, the space of maps f : U — Box. We will let

EL(U) c Fields(U)

denote the subspace consisting of those maps f : U — Box that are solutions to
the Euler-Lagrange equation. As U varies, EL(U) forms a sheaf of spaces on R.

We will let Obs“/(U) denote the commutative algebra of functions on EL(U)
(the precise class of functions we will consider will be discussed later). We will
think of Obs(U) as the collection of observables for our classical system that only
depend upon the behavior of the particle during the time period U. As U varies, the
algebras Obs“/(U) vary and together constitute a cosheaf of commutative algebras
on R.

1.3. Measurements in quantum mechanics. The notion of measurement is
fraught in quantum theory, but we will take a very concrete view. Taking a mea-
surement means that we have physical measurement device (e.g., a camera) that
we allow to interact with our system for a period of time. The measurement is then
how our measurement device has changed due to the interaction. In other words,
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we couple the two physical systems so that they interact, then decouple them and
record how the measurement device has modified from its initial condition. (Of
course, there is a symmetry in this situation: both systems are affected by their
interaction, so a measurement inherently disturbs the system under study.)

The observables for a physical system are all the imaginable measurements we
could take of the system. Instead of considering all possible observables, we might
also consider those observables which occur within a specified time period. This
period can be specified by an open interval U C R.

Thus, we arrive at the following principle.

Principle 1. For every open subset U C R, we have a set
Obs(U) of observables one can make during U.

Our second principle is a minimal version of the linearity implied by, e.g., the
superposition principle.
Principle 2. The set Obs(U) is a complex vector space.

We think of Obs(U) as being the collection of ways of coupling a measure-
ment device to our system during the time period U. Thus, there is a natural map
Obs(U) — Obs(V) if U c V is a shorter time interval. This means that the space
Obs(U) forms a precosheaf.

1.4. Combining observables. Measurements (and so observables) differ qual-
itatively in the classical and quantum settings. If we study a classical particle, the
system is not noticeably disturbed by measurements, and so we can do multiple
measurements at the same time. (To be a little less sloppy, we suppose that by
refining our measuring devices, we can make the impact on the particle as small as
we would like.) Hence, on each interval J we have a commutative multiplication
map Obs(J) ® Obs(J) — Obs(J). We also have maps Obs(/) ® Obs(J) — Obs(K)
for every pair of disjoint intervals /, J contained in an interval K, as well as the
maps that let us combine observables on disjoint intervals.

For a quantum particle, however, a measurement typically disturbs the system
significantly. Taking two measurements simultaneously is incoherent, as the mea-
surement devices are coupled to each other and thus also affect each other, so that
we are no longer measuring just the particle. Quantum observables thus do not
form a cosheaf of commutative algebras on the interval. However, there are no
such problems with combining measurements occurring at different times. Thus,
we find the following.

Principle 3. If U, U’ are disjoint open subsets of R, and
U,U’ c V where V is also open, then there is a map

* : Obs(U) ® Obs(U”) — Obs(V).

If O € Obs(U) and O’ € Obs(U’), then O x O’ is defined
by coupling our system to measuring device O during the
period U and to device O’ during the period U’.

Further, there are maps for an finite collection of dis-
joint time intervals contained in a long time interval, and
these maps are compatible under composition of such maps.
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(The precise meaning of these terms is detailed in Section

1)

1.5. Perturbative theory and the correspondence principle. In the bulk of
this two-volume book, we will be considering perturbative quantum theory. For us,
this adjective “perturbative” means that we work over the base ring C[[%]], where
at i = 0 we find the classical theory. In perturbative theory, therefore, the space
Obs(U) of observables on an open subset U is a C[[%]]-module, and the product
maps are C[[#]]-linear.

The correspondence principle states that the quantum theory, in the # — 0
limit, must reproduce the classical theory. Applied to observables, this leads to the
following principle.

Principle 4. The vector space Obs?(U) of quantum ob-
servables is a flat C[[#]]-module such that modulo 7, it is
equal to the space Obs?(U) of classical observables.

These four principles are at the heart of our approach to quantum field theory.
They say, roughly, that the observables of a quantum field theory form a factor-
ization algebra, which is a quantization of the factorization algebra associated to
a classical field theory. The main theorem presented in this two-volume book is
that one can use the techniques of perturbative renormalization to construct factor-
ization algebras perturbatively quantizing a certain class of classical field theories
(including many classical field theories of physical and mathematical interest). As
we have mentioned, this first volume focuses on the general theory of factorization
algebras and on simple examples of field theories; this result is derived in volume
2.

1.6. Associative algebras in quantum mechanics. The principles we have
described so far indicate that the observables of a quantum mechanical system
should assign, to every open subset U C R, a vector space Obs(U), together with a
product map

Obs(U) ® Obs(U’) — Obs(V)
if U, U’ are disjoint open subsets of an open subset V. This is the basic data of a
factorization algebra (see Section 1).

It turns out that in the case of quantum mechanics, the factorization algebra
produced by our quantization procedure has a special property: it is locally con-
stant (see Section 4). This means that the map Obs((a, b)) — Obs(R) is an isomor-
phism for any interval (a, b). Let A be denote the vector space Obs(R); note that A
is canonically isomorphic to Obs((a, b)) for any interval (a, b).

The product map

Obs((a, b)) ® Obs((c,d)) — Obs((a,d))
when a < b < ¢ < d, becomes, via this isomorphism, a product map
m:A®A — A.

The axioms of a factorization algebra imply that this multiplication turns A into
an associative algebra. As we will see in Section 2, this associative algebra is the
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Weyl algebra, which one expects to find as the algebra of observables for quantum
mechanics of a particle moving in R”.

This kind of geometric interpretation of algebra should be familiar to topolo-
gists: associative algebras are algebras over the operad of little intervals in R, and
this is precisely what we have described. As we explain in Section 4, this relation-
ship continues and so our quantization theorem produces many new examples of
algebras over the operad E,, of little n-discs.

An important point to take away from this discussion is that associative al-
gebras appear in quantum mechanics because associative algebras are connected
with the geometry of R. There is no fundamental connection between associative
algebras and any concept of “quantization”: associative algebras only appear when
one considers one-dimensional quantum field theories. As we will see later, when
one considers topological quantum field theories on n-dimensional space times,
one finds a structure reminiscent of an E,-algebra instead of an E-algebra.

Remark: As a caveat to the strong assertion above (and jumping ahead of our story),
note that for a manifold of the form X — R, one can push forward a factorization
algebra Obs on X X R to a factorization algebra . Obs on R along the projection
map 7 : X X R — R. In this case, 7. Obs((a, b)) = Obs(X X (a, b)). Hence, a quan-
tization of a higher dimensional theory will produce, via such pushforwards to R,
deformations of associative algebras, but knowing only the pushforward is typi-
cally insufficient to reconstruct the factorization algebra on the higher dimensional
manifold. &

2. A preliminary definition of prefactorization algebras

Below (see Section 1) we give a more formal definition, but here we provide
the basic idea. Let M be a topological space (which, in practice, will be a smooth
manifold).

2.0.1 Definition. A prefactorization algebra ¥ on M, taking values in cochain
complexes, is a rule that assigns a cochain complex ¥ (U) to each open set U ¢ M
along with

(1)) a cochain map F(U) — F (V) for each inclusion U C V;
((i1)) a cochain map F(U)®---®F (U,) — F (V) for every finite collection
of open sets where each U; C V and the U; are disjoint;
((iii)) the maps are compatible in a certain natural way. The simplest case of
this compatibility is that if U C 'V C W is a sequence of open sets, the
map F(U) — F (W) agrees with the composition through 5 (V)).

Remark: A prefactorization algebra resembles a precosheaf, except that we tensor
the cochain complexes rather than taking their direct sum. &

The observables of a field theory, whether classical or quantum, form a pref-
actorization algebra on the spacetime manifold M. In fact, they satisfy a kind of
local-to-global principle in the sense that the observables on a large open set are
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determined by the observables on small open sets. The notion of a factorization
algebra (Section 1) makes this local-to-global condition precise.

3. Prefactorization algebras in quantum field theory

The (pre)factorization algebras of interest in this book arise from perturbative
quantum field theories. We have already discussed in Section 1 how factorization
algebras appear in quantum mechanics. In this section we will see how this picture
extends in a natural way to quantum field theory.

The manifold M on which the prefactorization algebra is defined is the space-
time manifold of the quantum field theory. If U C M is an open subset, we will in-
terpret ¥ (U) as the collection of observables (or measurements) that we can make
which only depend on the behavior of the fields on U. Performing a measurement
involves coupling a measuring device to the quantum system in the region U.

One can bear in mind the example of a particle accelerator. In that situation,
one can imagine the space-time M as being of the form M = A X (0, ¢), where A is
the interior of the accelerator and ¢ is the duration of our experiment.

In this situation, performing a measurement on an open subset U C M is some-
thing concrete. Let us take U = V X (g,9), where V C A is some small region in
the accelerator and where (&, 9) is a short time interval. Performing a measurement
on U amounts to coupling a measuring device to our accelerator in the region V,
starting at time € and ending at time §. For example, we could imagine that there is
some piece of equipment in the region V of the accelerator, which is switched on
at time € and switched off at time 6.

3.1. Interpretation of the prefactorization algebra axioms. Suppose that
we have two different measuring devices, O and O,. We would like to set up our
accelerator so that we measure both O and O;.

There are two ways we can do this. Either we insert O and O; into disjoint
regions V1, V5 of our accelerator. Then we can turn O and O; on at any times we
like, including for overlapping time intervals.

If the regions Vi, V; overlap, then we can not do this. After all, it doesn’t make
sense to have two different measuring devices at the same point in space at the
same time.

However, we could imagine inserting O into region V| during the time interval
(a, b); and then removing O1, and inserting O, into the overlapping region V, for
the disjoint time interval (c, d).

These simple considerations immediately suggest that the possible measure-
ments we can make of our physical system form a prefactorization algebra. Let
Obs(U) denote the space of measurements we can make on an open subset U C M.
Then, by combining measurements in the way outlined above, we would expect to
have maps

Obs(U) ® Obs(U”") — Obs(V)

whenever U, U’ are disjoint open subsets of an open subset V. The associativity
and commutativity properties of a prefactorization algebra are evident.
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3.2. The cochain complex of observables. In the approach to quantum field
theory considered in this book, the factorization algebra of observables will be a
factorization algebra of cochain complexes. That is, Obs assigns a cochain complex
Obs(U) to each open U. One can ask for the physical meaning of the cochain
complex.

We will repeatedly mention observables in a gauge theory, since these kinds of
cohomological aspects are well-known for such theores.

It turns out that the “physical” observables will be H(Obs(U)). If O € Obs®(U)
is an observable of cohomological degree 0, then the equation dO = 0 can often
be interpreted as saying that O is compatible with the gauge symmetries of the
theory. Thus, only those observables O € Obs’(U) that are closed are physically
meaningful.

The equivalence relation identifying O € Obs’(U) with O + dO’, where O’ €
Obs~!(U), also has a physical interpretation, which will take a little more work
to describe. Often, two observables on U are physically indistinguishable (that
is, they can not be distinguished by any measurement one can perform). In the
example of an accelerator outlined above, two measuring devices are equivalent if
they always produce the same expectation values, no matter how we prepare our
system, or no matter what boundary conditions we impose.

As another example, in the quantum mechanics of a free particle, the observ-
able measuring the momentum of a particle at time # is equivalent to that measuring
the momentum of a particle at another time #’. This is because, even at the quan-
tum level, momentum is preserved (as the momentum operator commutes with the
Hamiltonian).

From the cohomological point of view, if 0,0’ € Obs’(U) are both in the
kernel of d (and thus “physically meaningful”), then they are equivalent in the
sense described above if they differ by an exact observable.

It is a little more difficult to provide a physical interpretation for the non-zero
cohomology groups H"(Obs(U)). The first cohomology group H'(Obs(U)) con-
tains anomalies (or obstructions) to lifting classical observables to the quantum
level. For example, in a gauge theory, one might have a classical observable that re-
spects gauge symmetry. However, it may not lift to a quantum observable respect-
ing gauge symmetry; this happens if there is a non-zero anomaly in H'(Obs(U)).

The cohomology groups H"(Obs(U)), when n < 0, are best interpreted as
symmetries, and higher symmetries, of observables. Indeed, we have seen that the
physically meaningful observables are the closed degree 0 elements of Obs(U).
One can construct a simplicial set, whose n-simplices are closed and degree O ele-
ments of Obs(U) ® Q*(A"). The vertices of this simplicial set are observables, the
edges are equivalences between observables, the faces are equivalences between
equivalences, and so on.

The Dold-Kan correspondence (see 1.2.2) tells us that the nth homotopy group
of this simplicial set is H~"(Obs(U)). This allows us to interpret H~1(Obs(U))
as being the group of symmetries of the trivial observable 0 € H(Obs(U)), and
H~2(0Obs(U)) as the symmetries of the identity symmetry of 0 € H%(Obs(U)), and
SO on.
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Although the cohomology groups H"(Obs(U)) where n > 1 do not have a clear
physical interpretation as clear as that for H°, they are mathematically very natural
objects and it is important not to discount them. For example, let us consider a
gauge theory on a manifold M, and let D be a disc in M. Then it is often the
case that elements of H'(Obs(D)) can be integrated over a circle in M to yield
cohomological degree 0 observables (such as Wilson operators).

4. Comparisons with other formalizations of quantum field theory

Now that we have explained carefully what we mean by a prefactorization
algebra, let us say a little about the history of this concept, and how it compares to
other mathematical approaches to quantum field theory. We will make no attempt
to state formal theorems relating our approach to other axiom systems. Instead we
will sketch heuristic relationships between the various axiom systems.

4.1. Factorization algebras in the sense of Beilinson-Drinfeld. For us, one
source of inspiration is the work of Beilinson and Drinfeld on chiral conformal
field theory. These authors gave a geometric reformulation of the theory of vertex
algebras in terms of an algebro-geometric version of the concept of factorization
algebra. For Beilinson and Drinfeld, a factorization algebra on an algebraic curve
X is, in particular, a collection of sheaves ¥, on the Cartesian powers X" of X. If
(x1,...,x,) € X" is an n-tuple of distinct points in X, let F,, _, denote the stalk
of ¥, at this point in X”*. The axioms of Beilinson and Drinfeld imply that there is
a canonical isomorphism

o =T ® - ®F,.

.....

In fact, Beilinson-Drinfeld’s axioms tell us that the restriction of the sheaf F,, to
any stratum of X" (in the stratification by number of points) is determined by the
sheaf ¥ on X. The fundamental object in their approach is the sheaf 77. All the
other sheaves 7, are built from copies of 7 by certain gluing data, which we can
think of as structures put on the sheaf 7.

One should think of the stalk ¥, of ¥ at x as the space of local operators in a
field theory at the point x. Thus, 77 is the sheaf on X whose stalks are the spaces of
local operators. The other structures on 7 reflect the operator product expansions
of local operators.

Let us now sketch, heuristically, how we expect their approach to be related to
ours. Suppose we have a factorization algebra F on X in our sense. Then, for every
open V C X, we have a vector space 7 (V) of observables on V. The space of local
operators associated to a point x € X should be thought of as those observables
which live on every open neighbourhood of x. In other words, we can define

F. = im F(V)
xeV
to be the limit over open neighbourhoods of x of the observables on that neigh-

bourhood. This limit is the costalk of the pre-cosheaf F.
Thus, the heuristic translation between their axioms and ours is that the sheaf
%1 on X that they construct should have stalks coinciding with the costalks of our
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factorization algebra. We do not know how to turn this idea into a precise theorem
in general. We do, however, have a precise theorem in one special case.

Beilinson-Drinfeld show that a factorization algebra in their sense on the affine
line A!, which is also translation and rotation equivariant, is the same as a vertex
algebra. We have a similar theorem. We show in Chapter 5 that a factorization
algebra on C that is translation and rotation invariant, and also has a certain “holo-
morphic” property, gives rise to a vertex algebra. Therefore, in this special case,
we can show how a factorization algebra in our sense gives rise to one in the sense
used by Beilinson and Drinfeld.

4.2. Segal’s axioms for quantum field theory. Segal has developed and stud-
ied some very natural axioms for quantum field theory Segal (2010). These axioms
were first studied in the world of topological field theory by Atiyah, Segal, and
Witten, and in conformal field theory by Kontsevich and Segal (2004).

According to Segal’s philosophy, a d-dimensional quantum field theory (in Eu-
clidean signature) is a symmetric functor from the category Cobsiem of d-dimensional
Riemannian cobordisms. An object of the category Cobsiem is a compact d — 1-
manifold together with a germ of a d-dimensional Riemannian structure. A mor-
phism is a d-dimensional Riemannian cobordism. The symmetric monoidal struc-
ture arises from disjoint union. As defined, this category does not have identity
morphisms, but they can be added in formally.

4.2.1 Definition. A Segal field theory is a symmetric monoidal functor from Cobgiem
to the category of (topological) vector spaces.

We won’t get into details about what kind of topological vector spaces one
should consider, because our aim is just to sketch a heuristic relationship between
Segal’s picture and our picture.

In our approach to studying quantum field theory, the fundamental objects are
not the Hilbert spaces associated to codimension 1 manifolds, but rather the spaces
of observables. Any reasonable axiom system for quantum field theory should
be able to capture the notion of observable. In particular, we should be able to
understand observables in terms of Segal’s axioms.

Segal (in lectures and conversations) has explained how to do this. Suppose
we have a Riemannian manifold M and a point x € M. Consider a ball B(x, r)
of radius r around x, whose boundary is a sphere S (x, r). Segal explains that the
Hilbert space Z(S (x, r)) should be thought of as the space of operators on the ball
B(x,r).

If r < ¥/, there is a cobordism S (x,r) — S(x,7’) given by the complement of
B(x, r) in the closed ball B(x, r’). This gives rise to maps Z(S (x, 7)) — Z(S (x,1")).
Segal defines the space of local operators at x to be the limit

lim Z(S (x, r))
r—0
of this inverse system.

One can understand from this idea of Segal’s how one should construct some-
thing like a prefactorization algebra on any Riemannian manifold M of dimension



4. COMPARISONS WITH OTHER FORMALIZATIONS OF QUANTUM FIELD THEORY 11

n from a Segal field theory. Given an open subset U c M whose boundary is a
codimension 1 submanifold dU, we define the space # (U) of observables on U to
be Z(0U). If U, V, W are three such opens in M, such that the closures of U and V
are disjoint in W, then there is a cobordism

W\ (ULV):0ULaV — oW.
This cobordism induces a map
FU)QRF(V)=ZOU)®Z(V) — Z(OW) = F(W).

There are similar maps defined when Uy, ..., U,, W are opens with smooth bound-
ary such that the closures of the U; are disjoint and contained in W. In this way, we
can construct from a Segal field theory something which is very like a prefactoriza-
tion algebra; the only difference is that we restrict our attention to those opens with
smooth boundary, and the prefactorization algebra structure maps are only defined
for collections of opens whose closures are disjiont.

Remark: Below we discuss how certain universal factorization algebras relate to
topological field theories in the style of Atiyah-Segal-Lurie. Dwyer, Stolz, and Te-
ichner have also proposed an approach to constructing Segal-style non-topological
field theories, such as Riemannian field theories, using factorization algebras. <&

4.3. Topological field theory. One class of field theories for which there ex-
ists an extensive mathematical literature is topological field theories (see, for in-
stance, Lurie (2009b)). One can ask how our axiom system relates to those for
topological field theories.

There is a subclass of factorization algebras that appear in topological field
theories, called locally constant factorization algebras. A factorization algebra 7
on a manifold M, valued in cochain complexes, is locally constant if, for any two
discs D1 € D, in M, the map F (D) — F(D») is a quasi-isomorphism. A theorem
of Lurie (n.d.b) shows that, given a locally constant factorization algebra  on R",
the complex ¥ (D) has the structure of an E, algebra.

This relationship matches with what one expects from the standard approach
to the axiomatics of topological field theory. According to the standard axioms
for topological field theories, a topological field theory (TFT) of dimension  is a
symmetric monoidal functor

Z : Cob, — Vect

from the n-dimensional cobordism category to the category of vector spaces. Here,
Cob, is the category whose objects are closed smooth n — 1-manifolds and the
morphisms are cobordisms between them. (It is standard, following Freed (1994),
to also consider higher-categorical objects associated to manifolds of higher codi-
mension).

For an n — 1-manifold N, we should interpret Z(N) as the Hilbert space of the
TFT on N. Then, following standard physics yoga, we should interpret Z(S"~!) as
the space of local operators of the theory. There are natural cobordisms between
disjoint unions of the n — 1-sphere which make Z(S"~!) into an E, algebra. For
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example, in dimension 2, the pair of pants with k legs provides the k-ary operations
for the E, algebra structure on Z(S h.

This story fits nicely with our approach. If we have a locally constant factoriza-
tion algebra # on R”, then F(D") is an E,, algebra. Further, we interpret ¥ (D") as
being the space of observables supported on an n-disc. Since ¥ is locally constant,
this may as well be the observables supported on a point, because it is independent
of the radius of the n-disc.

4.4. Correlation functions. In some classic approaches to the axiomatics of
quantum field theory — such as the Wightman axioms or the Osterwalder-Schrader
axioms, their Euclidean counterpart — the fundamental objects are correlation
functions. While we make no attempt to verify that a factorization algebra gives
rise to a solution of any of these axiom systems, we do show that the factorization
algebra has enough data to define the correlation functions. Let us briefly explain
how this works for two different classes of examples.

Suppose that we have a factorization algebra ¥ on a manifold M over the ring
R[[#]] of formal power series in #i. Suppose that

H(F (M) = R[[7]].

This condition holds in some natural examples: for instance, for Chern-Simons
theory on R? or for a massive scalar field theory on a compact manifold M.

Let Uy,...,U, C M be disjoint open sets. The factorization product gives us a
R[[A]]-multilinear map

(=) HAF(U) x - x H(F(U,) = H'(F(M)) = R[[A]].

In this way, given observables O; € HO(F (U))), we can produce a formal power
series in 7

(01, ...,0p) € R[[A]].

In the field theories we just mentioned, this map does compute the expectation
value of observables. (See Section 6, where we describe this map in terms of
Green’s functions. We also recover the Gauss linking number there from Abelian
Chern-Simons theory.)

This construction doesn’t give us expectation values in every situation where
we might hope to construct them. For example, if we work with a field theory
on R”, it is rarely the case that HY(FRY)) is isomorphic to R[[%]]. We would,
however, expect to be able to define correlation functions in this situation. To
achieve this, we define a variant of this construction that works well on R"”. Given a
factorization algebra on R" with ground ring R[[7]] as before, we define in Section
9 a vacuum to be an R[[#]]-linear map

(=) : HYF@®R™Y) - R[[A]]

that is translation-invariant and satisfies a certain cluster decomposition principle.
After choosing a vacuum, one can define correlation functions in the same way as
above.
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5. Overview of this volume

This two-volume work concerns, as the titles suggests, factorization algebras
and quantum field theories. In this introduction so far, we have sketched what a
prefactorization algebra is and why it might help organize and analyze the behavior
of the observables of a quantum field theory. These two volumes develop these
ideas further in a number of ways.

The first volume focuses on factorization algebras: their definition, some for-
mal properties, and some simple constructions of factorization algebras. The quan-
tum field theory in this volume is mostly limited to free field theories. In a moment,
we give a detailed overview of this volume.

In the second volume, we focus on our core project: we develop the Batalin-
Vilkovisky formalism for both classical and quantum field theories and show how
it automatically produces a deformation quantization of factorization algebras of
observables. In particular, Volume 2 will introduce the factorization algebras as-
sociated to interacting field theories. We also provide there a refinement of the
Noether theorems in the setting of factorization algebras, in which, roughly speak-
ing, local symmetries of a field theory lift to a map of factorization algebras,. This
map realizes the symmetries as observables of the field theory. For a more detailed
overview of Volume 2, see its introductory chapter.

5.1. Chapter by chapter. Chapter 2 serves as a second introduction. In this
chapter we explain, using informal language and without any background knowl-
edge required, how the observables of a free scalar field theory naturally form a
prefactorization algebra. The reader who wants to understand the main ideas of this
two-volume work with the minimum amount of technicalities should start there.

Chapter 3 gives a more careful definition of the concept of a prefactorization
algebra, and analyzes some basic examples. In particular, the relationship between
prefactorization algebras on R and associative algebras is developed in detail. We
also introduce a construction that will play an important role in the rest of the
book: the factorization envelope of a sheaf of Lie algebras on a manifold. This
construction is the factorization version of the universal enveloping algebra of a
Lie algebra.

In Chapter 4 we revisit the prefactorization algebras associated to a free field
theory, but with more care and in greater generality than we used in Chapter 2. The
methods developed in this chapter apply to gauge theories, using the BV/BRST
method to treat gauge symmetry. We analyse in some detail the example of Abelian
Chern-Simons theory, and verify that the expectation value of Wilson lines in this
theory recovers the Gauss linking number.

Chapter 5 introduces the concept of a holomorphic prefactorization algebra on
C". The prefactorization algebra of observables of a field theory with a holomor-
phic origin — such as a holomorphic twist Costello (2013) of a supersymmetric
gauge theory — will be such a holomorphic factorization algebra. We prove that
a holomorphic prefactorization algebra on C gives rise to a vertex algebra, thus
linking our story with a more traditional point of view on the algebra of operators
of a chiral conformal field theory.
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The final chapters in this book develop the concept of factorization algebra,
by adding a certain local-to-global axiom to the definition of prefactorization alge-
bra. In Chapters 6, we provide the definition, discuss the relation between locally-
constant factorization algebras and E,, algebras, and explain how to construct sev-
eral large classes of examples. In 7, we develop some formal properties of the
theory of factorization algebras. Finally, in 8, we move beyond the formal and
analyze some interesting explicit examples. For instance, we compute the fac-
torization homology of the Kac-Moody enveloping factorization algebras, and we
explain how Abelian Chern-Simons theory produces a quantum group.

5.2. A comment on functional analysis and algebra. This book uses an un-
usual array of mathematical techniques, including both homological algebra and
functional analysis. The homological algebra appears because our factorization al-
gebras live in the world of cochain complexes (ultimately, because they come from
the BV formalism for field theory). The functional analysis appears because our
factorization algebras are built from vector spaces of an analytic nature, such as the
space of distributions on a manifold. We have included an expository introduction
to the techniques we use from homological algebra, operads, and sheaf theory in
Appendix A.

It is well-known that it is hard to make homological algebra and functional
analysis work well together. One reason is that, traditionally, the vector spaces
that arise in analysis are viewed as topological vector spaces, and the category of
topological vector spaces is not an Abelian category. In Appendix B, we introduce
the concept of differentiable vector spaces. Differentiable vector spaces are more
flexible than topological vector spaces, yet retain enough analytic structure for our
purposes. We show that the category of differentiable vector spaces is an Abelian
category, and indeed satisfies the strongest version of the axioms of an Abelian
category: it is a locally-presentable AB5 category. This means that homological al-
gebra in the category of differentiable vector spaces works very nicely. We develop
this in Appendix C.

A gentle introduction to differentiable vector spaces, containing more than
enough to follow everything in both volumes, is contained in Chapter 3, section 5.
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Prefactorization algebras






CHAPTER 2

From Gaussian measures to factorization algebras

This chapter serves as a kind of second introduction, demonstrating how the
free scalar field theory on a manifold M produces a factorization algebra on M. In
the first chapter, we have already sketched why the observables of a field theory
ought to form a factorization algebra, without making precise what we meant by
a quantum field theory. Here we will meet the second main theme of the book —
the Batalin-Vilkovisky (BV) formalism for field theory — and see how it naturally
produces a factorization algebra.

Our approach to quantum field theory grows out of the idea of a path integral.
Instead of trying to directly define such an integral, however, the BV formalism
provides a homological approach to integration, similar in spirit to the de Rham
complex. (As we will see in the next section, in the finite dimensional setting,
the BV complex is isomorphic to the de Rham complex.) The philosophy goes
like this. If the desired path integral were well-defined mathematically, we could
compute the expectation values of observables, and the expectation value map E
is linear, so we obtain a linear equivalence relation between observables O ~ O’
whenever E(O — O’) = 0. We can reconstruct, in fact, the expectation value by
describing the inclusion Relg := kerE < Obs and taking the cokernel of this
inclusion. In other words, we identify “integrands with the same integral.” The
BV formalism approaches the problem from the other direction: even though the
desired path integral may not be well-defined, we often know, from physical argu-
ments, when two observables ought to have the same expectation value (e.g., via
Ward identities), so that we can produce a subspace Relgy < Obs. The BV for-
malism produces a subspace Relgy determined by the classical field theory, as we
will see below, but this subspace is typically not of codimension 1. Further input,
like boundary conditions, are often necessary to get a number (i.e., to produce a
codimension 1 subspace of relations). Nonetheless, the relations in Relgy would
hold for any such choice, so any expectation value map coming from physics would
factor through Obs /Relgy.

In fact, the BV formalism produces a cochain complex, encoding relations
between the relations and so on, whose zeroth cohomology group is the space
Obs /Relgy. (Here, we are using Obs to denote the “naive” observables that one
would first write down for the theory, not observables involving the auxiliary “anti-
fields” introduced when applying the BV formalism.)

That description is quite abstract; the rest of this chapter is about making the
idea concrete with examples. In physics, a free field theory is one where the action
functional is a purely quadratic function of the fields. A basic example is the free
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scalar field theory on a Riemannian manifold (M, g), where the space of fields is
the space C*°(M) of smooth functions on M, and the action funtional is

S@) =3 fM B(Dg +m*)p dvol,.

Here A, refers to the Laplacian with the convention that its eigenvalues are non-
negative, and dvol, denotes the Riemannian volume form associated to the metric.
The positive real number m is the mass of the theory. The main quantities of
interest in the free field theory are the correlation functions, defined by the heuristic
expression

(P(x1) - P(xy)) = f P(x1)... d(x,) e Ddg,

$eC=(M)

where xp, ..., x, are points in M. Note that there is an observable

O(x1, ..., Xn) 1 @ > Plx1) -~ P(xn)

sending a field ¢ to the product of its values at those points. The support of this
observable is precisely the set of points {xi,...,x,}, so this observable lives in
Obs(U) for any open U containing all those points. The standard computations in
quantum field theory tell us that this observable has the same expectation value
as linear combinations of other correlation functions. For instance, Wick’s lemma
tells us how the two-point correlation function relates to the Green’s function for
Ag +m?.
Our task is to explain how the combination of the BV formalism and prefactor-
ization algebras provides a simple and natural way to make sense of these relations.
We will see that for a free theory on a manifold M, there is a space of observables
associated to any open subset U Cc M. We will see that that the operations we
can perform on these spaces of observables give us the structure of a prefactoriza-
tion algebra on M. This example will serve as further motivation for the idea that
observables of a field theory are described by a prefactorization algebra.

1. Gaussian integrals in finite dimensions

As in many approaches to quantum field theory, we will motivate our defini-
tion of the prefactorization algebra of observables by studying finite dimensional
Gaussian integrals. Thus, let A be an n X n symmetric positive-definite real matrix,
and consider Gaussian integrals of the form

f P (_% Z xiAiij') fx)d"x

where f is a polynomial function on R". Note the formal analogy to the correlation
function we wish to compute: here x replaces ¢, % 2. XiA;jx;j is quadratic in x as §
isin ¢, and f(x) is polynomial in x as O(¢) is a polynomial in ¢.

Most textbooks on quantum field theory would explain, at this point, Wick’s
lemma, which is a combinatorial expression for such integrals. It reduces the in-
tegral above to a sum involving the quadratic moments of the Gaussian measure.
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Then, such a textbook would go on to define similar infinite-dimensional Gauss-
ian integrals using the analogous combinatorial expression. The key point is the
simplicity of the moments of a Gaussian measure, which allows immediate gener-
alization to infinite dimensions.

We will take a different approach, however. Instead of focusing on the com-
binatorial expression for the integral, we will focus on the divergence operator
associated to the Gaussian measure. (This operator provides the inclusion map
Rel < Obs discussed at the beginning of this chapter.)

Let P(R") denote the space of polynomial functions on R". Let Vect(R") denote
the space of vector fields on R" with polynomial coefficients. If d"x denotes the
Lebesgue measure on R”, let w4 denote the measure

wp = exp (—% Z x,'Al-jxj) d"x.
Then, the divergence operator Div,,, associated to this measure is a linear map
Div,, : Vect(R") — P(R"),
defined abstractly by saying that if V € Vect(R"), then
Lyws = (Div,, V) wa

where Ly refers to the Lie derivative. Thus, the divergence of V measures the
infinitesimal change in volume that arises when one applies the infinitesimal dif-
feomorphism V.

In coordinates, the divergence is given by the formula

() Div,,, (Z flaix,) =- Z fixjAij + Z %
i.j : L

(This formula is an exercise in applying Cartan’s magic formula: Ly = [d,ty].
Note that this divergence operator is therefore a disguised version of the exterior
derivative.)

By the definition of divergence, we see

f(DinA V) wp = 0

for all polynomial vector fields V, because

f(DinA V)wa = fLVwA = fd(LVwA)

and then we apply Stokes’ lemma. By changing basis of R" to diagonalize A, one
sees that the image of the divergence map is a codimension 1 linear subspace of
the space P(R") of polynomials on R"”. (This statement is true as long as A is
non-degenerate; positive-definiteness is not required).

Let us identify P(R")/ImDiv,,, with R by taking the basis of the quotient
space to be the image of the polynomial function 1. What we have shown so far
can be summarized in the following lemma.
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1.0.1 Lemma. The quotient map
P(R") - P(R")/ImDiv,,, =R

is the map that sends a function f to its expected value

_ Jon fa
: —fRnwA .

This lemma plays a crucial motivational role for us. If we want to know ex-
pected values (which are the main interest in the physics setting), it suffices to
describe a divergence operator. One does not need to produce the measure directly.

One nice feature of this approach to finite-dimensional Gaussian integrals is
that it works over any ring in which det A is invertible (this follows from the ex-
plicit algebraic formula we wrote for the divergence of a polynomial vector field).
This way of looking at finite-dimensional Gaussian integrals was further analyzed
in Gwilliam and Johnson-Freyd (n.d.), where it was shown that one can derive the
Feynman rules for finite-dimensional Gaussian integration from such considera-
tions.

(Ha

Remark: We should acknowledge here that our choice of polynomial functions and
vector fields was important. Polynomial functions are integrable against a Gaussian
measure, and the divergence of polynomial vector fields produce all the relations
between these integrands. If we worked with all smooth functions and smooth
vector fields, the cokernel would be zero. In the BV formalism, just as in ordinary
integration, the choice of functions plays an important role. &

2. Divergence in infinite dimensions

So far, we have seen that finite-dimensional Gaussian integrals are entirely
encoded in the divergence map from the Gaussian measure. In our approach
to infinite-dimensional Gaussian integrals, the fundamental object we will define
is such a divergence operator. We will recover the usual formulae for infinite-
dimensional Gaussian integrals (in terms of the propagator or Green’s function)
from our divergence operator. Further, we will see that analyzing the cokernel of
the divergence operator will lead naturally to the notion of prefactorization algebra.

For concreteness, we will work with the free scalar field theory on a Riemann-
ian manifold (M, g), which need not be compact. We will define a divergence
operator for the putative Gaussian measure on C*(M) associated to the quadratic
form % fM d(Lg + m*)¢ dvol,. (Here Ag + m? plays the role that the matrix A did in
the preceding section.)

Before we define the divergence operator, we need to define spaces of polyno-
mial functions and of polynomial vector fields. We will organize these spaces by
their support in M. Namely, for each open subset U c M, we will define polyno-
mial functions and vector fields on the space C*(U).

The space of all continuous linear functionals on C*(U) is the space D.(U) of
compactly supported distributions on U. In order to define the divergence operator,
we need to restrict to functionals with more regularity. Hence we will work with
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C’(U), where every element f € C°(U) defines a linear functional on C*(U) by
the formula

¢|—>ff¢dvolg.
U

ym (People sometimes call them “smeared” because these do not include beloved
functionals like delta functions, only smoothed-out approximations to them.)

As a first approximation to the algebra we wish to use, we define the space of
polynomial functions on C;°(U) to be

P(C™(U)) = Sym CX(U),

i.e., the symmetric algebra on C;°(U). An element of ﬁ(Cf."(U )) that is homoge-
neous of degree n can be written as a finite sum of monomials f - - - f;, where the
fi € CZ(U). Such a monomial defines a function on the space C*(U) of fields by
the formula

¢ JieD@(x1) ... fu(xn)(xn) dvolg(xi) A -+ A dvolg(xy).

(X1 5eeesXp)EUM

Note that because C.°(U) is a topological vector space, it is more natural to use
an appropriate completion of this purely algebraic symmetric power Sym” C°(U).
Because this version of the algebra of polynomial functions is a little less natural
than the completed version, which we will introduce shortly, we use the notation
P. The completed version is denoted P.

We define the space of polynomial vector fields in a similar way. Recall that if
V is a finite-dimensional vector space, then the space of polynomial vector fields
on V is isomorphic toP(V) ® V, where P(V) is the space of polynomial functions
on V. Anelement X = f ® v, with f a polynomial, acts on a polynomial g by the
formula

0
X@@=f a—g-
%
In particular, if g is homogeneous of degree n and we pick a representative g €
(V*)®", then dg/dv denotes the degree n — 1 polynomial

w glvewe: - Qw).

In other words, for polynomials, differentiation is a version of contraction.
In the same way, we would expect to work with

Vect(CX(U)) = P(C®(U)) ® C™(U).

We are interested, in fact, in a different class of vector fields. The space C*(U)
has a foliation, coming from the linear subspace C°(U) ¢ C*(U). We are actually
interested in vector fields along this foliation, due to the role of variational calcu-
lus in field theory. This restriction along the foliation is clearest in terms of the
divergence operator we describe below, so we explain it after Definition 2.0.1.
Thus, let - _
Vect.(CT(U)) = P(C™(U)) @ C2(U).

Again, it is more natural to use a completion of this space that takes account of the
topology on C°(U). We will discuss such completions shortly.



24 2. FROM GAUSSIAN MEASURES TO FACTORIZATION ALGEBRAS

Any element of \’/EEtC(C‘X’(U )) can be written as an finite sum of monomials of
the form

0

for fi,¢ € C°(U). By % we mean the constant-coefficient vector field given by
infinitesimal translation in the direction ¢ in C*(U).

Vector fields act on functions, in the same way as we described above: the
formula is

0 _
S "'fn%(gl o 8gm) = fi ---fnZgl ---gi---gmngi(X)cb(x)dvolg

where dvol, is the Riemannian volume form on U.

2.0.1 Definition. The divergence operator associated to the quadratic form

S(¢) = f ¢(a + m*)p dvol,
U

is the linear map
Div : Vect(C*(U)) — P(CZ(U))
defined by

~ a n
@)Dw(ﬁ-~ﬂ5$)=—ﬁ-~ﬁxA+m5¢+szb--r-J;J;¢uNKmdwﬂg
i=1

Note that this formula is entirely parallel to the formula for divergence of a
Gaussian measure in finite dimensions, given in formula (). Indeed, the formula
makes sense even when ¢ is not compactly supported; however, the term

A fulds +mP)e

need not be compactly supported if ¢ is not compactly supported. To ensure that
the image of the divergence operator is in F(Cz"’( U)), we only work with vector
fields with compact support, namely \7€5tc(C <)).

As we mentioned above, it is more natural to use a completion of the spaces
F(C ©(U)) and Vect . (C*(U)) of polynomial functions and polynomial vector fields.
We now explain a geometric approach to such a completion.

Let dvolg denote the Riemannian volume form on the product space U" arising
from the natural n-fold product metric induced by the metric g on U. Any element
F € C?(U") then defines a polynomial function on C*(U) by

¢|—>f[;n F(x1,. .., Xg)p(x1) - - - () dvoly.

This functional does not change if we permute the arguments of F' by an element
of the symmetric group S, so that this function only depends on the image of F
in the coinvariants of C;°(U") by the symmetric group action. This quotient, of
course, is isomorphic to invariants for the symmetric group action.
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Therefore we define
P(C™(U) = P C WMy,
n>0

where the subscript indicates coinvariants. The (purely algebraic) symmetric power
Sym" C°(U) provides a dense subspace of C;’?(U")S" = CZ2(U")s,. Thus, ﬁ(C‘X’(U))
is a dense subspace of P(C*(U)).

In a similar way, we define Vect.(C*(U)) by

Vect(C(U) = P c W™,
n>0

where the symmetric group S, acts only on the first n factors. A dense subspace
of CX(U" )57 is given by Sym”™ C2(U) ® C2(U) so that Vect.(C*(U)) is a dense
subspace of Vect.(C*(U)).

2.0.2 Lemma. The divergence map
Div : Vect(C¥(U)) = P(C™(V))
extends continuously to a map
Div : Vect.(C*(U)) = P(C*(U)).
Proor. Suppose that
F(X1, ..., Xps1) € CX(U™ g, C Vect (CP(U)).

The divergence map in equation (I) extends to a map that sends F' to

n
Ay, F(xp, .o, Xpg1) + Zf F(xt,...,Xis ..oy X, X)) dvol,.
=1 YxieU

Here, A,, ., denotes the Laplacian acting only on the n + 1st copy of U. Note that
the integral produces a function on U"~!, O

With these objects in hand, we are able to define the quantum observables of a
free field theory.

2.0.3 Definition. For an open subset U C M, let
HO(Obsq(U)) = P(C*(U))/ImDiv.

In other words, H°(Obs?(U)) be the cokernel of the operator Div. Later we
will see that this linear map Div naturally extends to a cochain complex of quantum
observables, which we will denote Obs?, whose zeroth cohomology is what we just
defined. This extension is why we write H°.

Let us explain why we should interpret this space as the quantum observables.
We expect that an observable in a field theory is a function on the space of fields.
An observable on a field theory on an open subset U C M is a function on the fields
that only depends on the behaviour of the fields inside U. Speaking conceptually,
the expectation value of the observable is the integral of this function against the
“functional measure” on the space of fields.
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Our approach is that we will not try to define the functional measure, but in-
stead we define the divergence operator. If we have some functional on C*(U) that
is the divergence of a vector field, then the expectation value of the corresponding
observable is zero. Thus, we would expect that the observable given by a diver-
gence is not a physically interesting quantity, since its value is zero. Thus, we
might as well identify it with zero.

The appropriate vector fields on C*(U) — the ones for which our divergence
operator makes sense — are vector fields along the foliation of C*(U) by com-
pactly supported fields. Thus, the quotient of functions on C*(U) by the subspace
of divergences of such vector fields gives a definition of observables.

3. The prefactorization structure on observables

Suppose that we have a Gaussian measure w4 on R”. Then every function
on R" with polynomial growth is integrable, and this space of functions forms a
commutative algebra. We showed that there is a short exact sequence

Div,,, Ew,
0 — Vect(R") — PR") — R — 0,

where E,,, denotes the expectation value map for this measure. But the image of
the divergence operator is not an ideal. (Indeed, usually an expectation value map
is not an algebra map!) This fact suggests that, in the BV formalism, the quantum
observables should not form a commutative algebra. One can check quickly that
for our definition above, H(Obs?(U)) is not an algebra.

However, we will find that some shadow of this commutative algebra structure
exists, which allows us to combine observables on disjoint subsets. This residual
structure will give the spaces H(Obs?(U)) of observables, viewed as a functor on
the category of open subsets U C M, the structure of a prefactorization algebra.

Let us make these statements precise. Note that P(C*(U)) is a commutative
algebra, as it is a space of polynomial functions on C*(U). Further, if U C V
there is a map of commutative algebras ext : P(C*(U)) — P(C*(V)), extending
a polynomial map F : C*(U) — R to the polynomial map F ores : C*(V) - R
by precomposing with the restriction map res : C*(V) — C*(U). This map ext
is injective. We will sometimes refer to an element of the subspace P(C*™(U)) C
P(C*(V)) as an element of P(C*™(V)) with support in U.

3.0.1 Lemma. The product map
P(CT(V) @ P(CT(V)) = P(CT(V))
does not descend to a map
H°(0bs(V)) ® H(Obs(V)) — H(Obs(V)).
If Uy, U, are disjoint open subsets of the open V C M, then we have a map

P(Uy) ® P(Uy) = P(V)
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obtained by combining the inclusion maps P(U;) — P(V) with the product map on
P(V). This map does descend to a map

H°(Obs(U1)) ® H(Obs(U»)) — H’(Obs(V)).
In other words, although the product of general observables does not make

sense, the product of observables with disjoint support does.

Proor. Let Uy, U, be disjoint open subsets of M, both contained in an open V.
Let us view the spaces Vect.(C*(U;)) and P(C*(U;)) as subspaces of Vect.(C*(V))
and P(C™(V)), respectively.

We denote by Divy,, the divergence operator on U;, namely,

Divy, : Vect.(C™(U;)) — P(CT(Uy)).

We use Divy to denote the divergence operator on V.
Our situation is then described by the following diagram:

q12

kerg, <= PU)®P(U;) — H°(Obs(Uy)) ® H'(Obs(Uy))
l
ImDivy <  P(CX(V) -5 H(Obs(V))

The middle vertical arrow is multiplication map. We want to show there is a vertical
arrow on the right that makes a commuting square. It suffices to show that the
image of ker g, in H%(Obs(V)) is zero.

Note that H(Obs(U1)) ® H°(Obs(U,)) is the cokernel of the map

P(C™(U1)) ® Vect(C™(U2)) ® Vect(C*(U1)) ® P(C™(U>))

1®Divy, + Divy, ®1

P(C™(U1) ® P(CT(U2)).

Hence, ker g12 = Im (1 ® Divy, + Divy, ®1).

We will show that the image of 1 ® Divy, + Divy, ®1 sits inside Im Divy. This
result ensures that we can produce the desired map.

Thus, it suffices to show that for any F is in P(C™(U})) and X is in Vect (C*(U>)),
there exists X in Vect.(C*(V)) such that Divv(ff) = F Divy,(X). (The same argu-
ment applies after switching the roles Uy and U;.) We will show, in fact, that

Div(FX) = F Div(X),

viewing F and X as living on the open V.

A priori, this assertion should be surprising. On an ordinary finite-dimensional
manifold, the divergence Div with respect to any volume form has the following
property: for any vector field X and any function f, we have

Div(fX) — fDivX = X(f),

where X(f) denotes the action of X on f. Note that X(f) is not necessarily in the
image of Div, in which case f Div X is not in the image of Div, and so we see that
Im Div is not an ideal.
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The same equation holds for the divergence operator we have defined in infinite
dimensions. If X € Vect.(C*(V)) and F' € P(C;°(V)), then

Div(FX) — F DivX = X(F).

This computation tells us that the image of Div is not an ideal, as there exist X(F)
not in the image of Div.

When F is in P(C*°(Uy)) and X is in Vect.(C*(U>,)), however, X(F) = 0, as
their supports are disjoint. Thus, we have precisely the desired relation F Div(X) =
Div(FX).

We now prove that X(F) = 0 when X and F' have disjoint support.

We are working with polynomial functions and vector fields, so that all compu-
tations can be done in a purely algebraic fashion; in other words, we will work with
derivations as in algebraic geometry. Let ¢ satisfy &2 = 0. For a polynomial vector
field X and a polynomial function F on a vector space V, we define the function
X(F) to assign to the vector v € V, the € component of F(v + £X,) — F(v). Here X,
denotes the tangent vector at v that X produces.

In our situation, we know that for any ¢ € C*(V), we have the following
properties:

e F'(¢) only depends on the restriction of ¢ to Uy, and
e X, is a function with support in U; and hence vanishes away from U,.

Thus, F(¢ + £X(¢)) = F(¢) as the restriction of ¢ + €X(¢) to U; agrees with the
restriction of ¢. We see then that

d
X(F)$) = — (F(¢ + £Xy) = F(@)) =0,

as asserted. O
In a similar way, if Uy, ..., U, are disjoint opens all contained in V, then there
is a map

H°(Obs(U1)) ® - -- ® H(Obs?(U,,)) — H°(Obs?(V))
descending from the map
PU)®---0 P(U,) — P(V)

given by inclusion followed by multiplication.

Thus, we see that the spaces HO(Obs?(U)) for open sets U C M are naturally
equipped with the structure maps necessary to define a prefactorization algebra.
(See Section 2 for a sketch of the definition of a factorization algebra, and Sec-
tion 1 for more details on the definition). It is straightforward to check, using the
arguments from the proof above, that these structure maps satisfy the necessary
compatibility conditions to define a prefactorization algebra.

4. From quantum to classical

Our general philosophy is that the quantum observables of a field theory are a
factorization algebra given by deforming the classical observables. The classical
observables are defined to be functions on the space of solutions to the equations
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of motion. We will now examine how our construction can be seen as just such a
deformation.

Let us see first why this holds for a class of measures on finite dimensional
vector spaces. Let S be a polynomial function on R”. Let d"x denote the Lebesgue
measure on R”, and consider the measure

w=eSMdy,

where 7 is a small parameter. The divergence with respect to w is given by the

formula
. 0 1 oS af;
D i— | =-= i— + —.
Ve (Z ﬁ ax,-) /] Z ﬁ c’)x,- 6x,-
As before, let P(R") denote the space of polynomial functions on R" and let Vect(R")
denote the space of polynomial vector fields. The divergence operator Div,, is a lin-

ear map map Vect(R") — P(R"). Note that the operators Div,, and 7 Div,, have the
same image so long as i # 0. When i1 = 0, the operator 7 Div,, becomes the

operator
0 oS
2ligg =~ Dby

Therefore, the 7 — 0 limit of the image of Div,, is the Jacobian ideal

Jac(S) = (2—S) c PR,

1

which corresponds to the critical locus of S in R”. Hence, the i — 0 limit of the ob-
servables P(R")/ Im Div,, is the commutative algebra P(R")/ Jac(S) that describes
functions on the critical locus of S'.

Let us now check the analogous property for the observables of a free scalar
field theory on a manifold M. We will consider the divergence for the putative
Gaussian measure

exp (—% f (A + m2)¢) d¢
M
on C*(M). For any open subset U C M, this divergence operator gives us a map
Divy, : Vect(C*(U)) — P(C*(U))
with
0 —
D L TR X SR )

- M

4
Note how 7 appears in this formula; it is just the same modification of the operator
(%) as Div,, is of the divergence operator for the measure e~ d"x.

As in the finite dimensional case, the first term dominates in the 7 — 0 limit.

The 7 — 0 limit of the image of Divy, is the closed subspace of P(C*(U)) spanned
by functionals of the form fi - - - (A + m?)¢, where f; and ¢ are in C>°(U)). This

subspace is the topological ideal in P(C*(U)) generated by linear functionals of the
form (A + mz)f, where f € CX(U). If S(¢) = fd)(A + m2)¢ is the action functional
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of our theory, then this subspace is precisely the topological ideal generated by all
the functional derivatives

oS o

{6¢ : peCy (U)}.

In other words, it is the Jacobian ideal for S and hence is cut out by the Euler-
Lagrange equations. Let us call this ideal Iz, (U).

A more precise statement of what we have just sketched is the following. De-
fine a prefactorization algebra H(Obs“/(U)) (the superscript ¢l stands for classi-
cal) that assigns to U the quotient algebra P(C*(U))/Ig.(U). Thus, HO(Obs (1))
should be thought of as the polynomial functions on the space of solutions to the
Euler-Lagrange equations. Note that each constituent space HO(ObsCl(U )) in this
prefactorization algebra has the structure of a commutative algebra, and the struc-
ture maps are all maps of commutative algebras. In short, H(Obs“) forms a com-
mutative prefactorization algebra. Heuristically, this terminology means that the
product map defining the factorization structure is defined for all pairs of opens
U1, Uy C V, and not just disjoint pairs.

Our work in the section is summarized as follows.

4.0.1 Lemma. There is a prefactorization algebra HO(ObSZ) over C[h] such that
when specialized to i = 1 is H*(Obs?) and to i = 0 is H(Obs).

This prefactorization algebra assigns to an open set the cokernel of the map
fi Divy, : Vect (C®(U))[H] — P(C*(U))[A],

where Divy is the map defined above.
We will see later that HO(Obsg(U )) is free as an R[%]-module, although this is
a special property of free theories and is not always true for an interacting theory.

5. Correlation functions

We have seen that the observables of a free scalar field theory on a manifold M
give rise to a factorization algebra. In this section, we will explain how the structure
of a factorization algebra is enough to define correlation functions of observables.
We will calculate certain correlation functions explicitly and recover the standard
answers.

Suppose now that M is a compact Riemannian manifold, and, as before, let
us consider the observables of the free scalar field theory on M with mass m > 0.
Then we have the following result.

5.0.1 Lemma. If the mass m is positive, then H*(Obs?(M)) = R.

Compare this result with the statement that for a Gaussian measure on R”,
the image of the divergence map is of codimension 1 in the space of polynomial
functions on R”. The assumption here that the mass is positive is necessary to
ensure that the quadratic form fM $(A + m?)¢ is non-degenerate.

This lemma will follow from our more detailed analysis of free theories in
Chapter 4, but we can sketch the idea here. The main point is that there is a family
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of operators over R[#] connecting H’(Obs?(M)) to HO(Obs!(M)). Tt is straight-
forward to see that the algebra HO(ObSCl(M)) is R. Indeed, observe that the only
solution to the equations of motion in the case that m > 0 is the function ¢ = 0,
since the assumption that A has nonnegative spectrum ensures that A¢p = —m?¢
has no nontrivial solution. Functions on a point are precisely R. To conclude that
HY(Obs?(M)) is also R, we need to show that HO(Osz(M )) is flat over R[7], which
will follow from a spectral sequence computation we will perform later in the book.
There is always a canonical observable 1 € HO(0bs?(U)) for any open subset
U c M. This element is defined to be the image of the function 1 € P(C*(U)). We
identify H°(Obs?(M)) with R by taking this observable 1 to be a basis vector.

5.0.2 Definition. Ler Uy, ...,U, C M be disjoint open subsets. The correlator is
the prefactorization structure map

(=) : H'(Obs!(U})) ® - - - ® H(Obs?(U,,)) — H*(Obs?(M)) = R

We should compare this definition with what happens in finite dimensions. If
we have a Gaussian measure on R”, then the space of polynomial functions modulo
divergences is one-dimensional. If we take the image of a function 1 to be a basis
of this space, then we get a map

PR") - R

from polynomial functions to R. This map is the integral against the Gaussian
measure, normalized so that the integral of the function 1 is 1.

In our infinite dimensional situation, we are doing something very similar. Any
reasonable definition of the correlation function of the observables Oy, ..., O,,
with O; in P(C*(U;)), should only depend on the product function O;--- 0, €
P(C*(M)). Thus, the correlation function map should be a linear map P(C*(M)) —
R. Further, it should send divergences to zero. We have seen that there is only one
such map, up to an overall scale.

5.1. Comparison to physics. Next we will check explicitly that this correla-
tion function map really matches up with what physicists expect. Let f; € C.°(U;)
be compactly-supported smooth functions on the open sets Uy, Uy € M. Let us
view each f; as a linear function on C*(U;), and so as an element of the polyno-
mial functions P(C*(U;)).

Let G € D(M x M) be the unique distribution on M x M with the property that

By + mHG(X, ) = Opiag-

Here 0pjae denotes the delta function supported on the diagonal copy of M inside
M x M. In other words, if we apply the operator A + m? to the first factor of G,
we find the delta function on the diagonal. Thus, G is the kernel for the operator
(a+m?)~!. In the physics literature, G is called the propagator; in the mathematics
literature, it is called the Green’s function for the operator A + m?. Note that G is
smooth away from the diagonal.
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5.1.1 Lemma. Given f; € C°(U;), there are classes [ f;] € HO(Obs?(U,)). Then

(LAlLLD = J1)G(x, ) ()

x,yeM

Note that this result is exactly the standard result in physics.

Proor. Later we will give a slicker and more general proof of this kind of
statement. Here we will give a simple proof to illustrate how the Green’s function
arises from our homological approach to defining functional integrals.

The operator A + m? is surjective. Thus, there is a preimage

¢p=+m)fHeCM),

which is unique because A + m? is also injective. Indeed, we know that

p(x) = f Gx.y) ).
yeM
Now consider the vector field
fl%) € Vect (C*(M)).
Note that

. 0
Div (f1 %) = f _ i) = fi (6 + myg) dvol

= (fol(X)G(x,y)fz(y)) 1= fife

The element f] f, € P(C*(M)) is a cocycle representing the factorization product
[£11[/2] in H°(Obs?(M)) of the observables [f;] € H°(Obs?(U;)). The displayed
equation tells us that

[fifal = (fM fl(X)G(x,y)fz(y)) -1 € H(Obs?(M)).

Since the observable 1 is chosen to be the basis element identifying H°(Obs?(M))
with R, the result follows. O

With a little more work, the same arguments recover the usual Wick’s formula
for correlators of the form (f] - - - f,).

Remark: These kinds of formulas are standard knowledge in physics, but not in
mathematics. For a more extensive discussion in a mathematical style, see Chapter
6 of Glimm and Jaffe (1987) or Lecture 3 by Kazhdan in Deligne et al. (1999). <&

6. Further results on free field theories

In this chapter, we showed that if we define the observables of a free field the-
ory as the cokernel of a certain divergence operator, then these spaces of observ-
ables form a prefactorization algebra. We also showed that this prefactorization
algebra contains enough information to allow us to define the correlation functions
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of observables, and that for linear observables we find the same formula that physi-
cists would write.

In Chapter 3 we will show that a certain class of factorization algebras on
the real line are equivalent to associative algebras, together with a derivation. As
Noether’s theorem suggest, the derivation arises from infinitesimal translation on
the real line, so that it encodes the Hamiltonian of the system.

In Chapter 4, we will analyze the factorization algebra of free field theories
in more detail. We will show that if we consider the free field theory on R, the
factorization algebra H’(Obs?) corresponds (under the relationship between fac-
torization algebras on R and associative algebras) to the Weyl algebra. The Weyl
algebra is generated by observables p, g corresponding to position and momentum
satisfying [p,q] = 1. If we consider instead the family over R[%] of factoriza-
tion algebras HO(Obsg) discussed above, then we find the commutation relation
[p,q] = h of Heisenberg. This algebra, of course, is what is traditionally called the
algebra of observables of quantum mechanics. In this case, we will further see that
the derivation of this algebra (corresponding to infinitesimal time translation) is an
inner derivation, given by bracketing with the Hamiltonian

H=p* - m’¢,

which is the standard Hamiltonian for the quantum mechanics of the harmonic
oscillator.

More generally, we recover canonical quantization of the free scalar field the-
ory on higher dimensional manifolds as follows. Consider a free scalar theory
on the product Riemannian manifold N X R, where N is a compact Riemannian
manifold. This example gives rise to a factorization algebra on R that assigns to
an open subset U C R, the space H(Obs?(N x U)). We will see that this fac-
torization algebra on R has a dense sub-factorization algebra corresponding to an
associative algebra. This associative algebra is the tensor product of Weyl alge-
bras, where each each eigenspace of the operator A + m? on C®(N) produces a
Weyl algebra. In other words, we find quantum mechanics on R with values in the
infinite-dimensional vector space C*(N). Since that space has a natural spectral
decomposition for the operator A + m?, it is natural to interpret as the algebra of
observables, the associative algebra given by tensoring together the Weyl algebra
for each eigenspace. This result is entirely consistent with standard arguments in
physics, being the factorization algebra analog of canonical quantization.

7. Interacting theories

In any approach to quantum field theory, free field theories are easy to con-
struct. The challenge is always to construct interacting theories. The core results
of this two-volume work show how to construct the factorization algebra corre-
sponding to interacting field theories, deforming the factorization algebra for free
field theories discussed above.

Let us explain a little bit about the challenges we need to overcome in order to
deal with interacting theories, and how we overcome these challenges.
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Consider an interacting scalar field theory on a Riemannian manifold M. For
instance, we could consider an action functional of the form

S(¢>:—%L¢<A+m2>¢+fM¢4.

In general, the action functional must be local: it must arise as the integral over M
of some polynomial in ¢ and its derivatives. This condition is due to our interest in
field theories, but it is also necessary to produce factorization algebras.

We will let I(¢) denote the interaction term in our field theory, which consists
of the cubic and higher terms in S. In the above example, I(¢) = f ¢*. We will
always assume that the quadratic term in S is similar in form —% fM d(A + m?)g,
i.e., we require an ellipticity condition. (Of course, the examples amenable to our
techniques apply to a very general class of interacting theories, including many
gauge theories.)

If U ¢ M is an open subset, we can consider, as before, the spaces Vect .(C*(M))
and P(C®(M)) of polynomial functions and vector fields on M. By analogy with
the finite-dimensional situation, one can try to define the divergence for the putative
measure exp S (¢)/Adu (where du refers to the “Lebesgue measure” on C*(M))) by
the formula

? as —
Divh(fl...f,,%)=%fl...f,,%+Zf1...f,-...f,1fo,-¢.

This formula agrees with the formula we used when S was purely quadratic.

But now a problem arises. We defined P(C*(U)) as the space of polynomial
functions whose Taylor terms are given by integration against a smooth function
on U". That is,

P(C*(W) = P s,

Unfortunately, if ¢ € C°(U)), then & 0 3 is not necessarily in this space of functions.

For instance, if I(¢) = f ¢* is the interaction term in the example of the ¢* theory,
then

—(;0)— f gy’ dvol.

Thus ‘91 prov1des a cubic functlon on the space C*(U), but it is not given by inte-

gratlon against an element in C§°(U3). Instead it is given by integrating against a
distribution on U3, namely, the delta-distribution on the diagonal.

We can try to solve this issue by using a larger class of polynomial functions.
Thus, we could let

P(C(U) = EP DU,

where D.(U") is the space of compactly supported distributions on U. Similarly,
we could let

Veet(U) = P DU s,

The spaces P(C*(U)) and Vect.(C*(U)) are dense subspaces of these spaces.
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If ¢ e D,(U) is a compactly-supported distribution, then for any local func-
tional S, ¢ is a well-defined element of P(C®(U)). Thus, it looks like we have
resolved our problem.

However, using this larger space of functions gives us a new problem: the
second term in the divergence operator now fails to be well-defined! For example,
if f,¢ € D.(U), then we have

Div(155) = 155 + | 0

Now, f ,; /¢ no longer make sense, because we are trying to multiply distributions.
More explicitly, this term involves pairing the distribution f R ¢ on the diagonal in
M? with the delta-function on the diagonal.

If we consider the 7 — 0 limit of this putative operator 7 Divy, we nonetheless
find a well-defined operator

Vect (C®(U)) = P(C™(U))
X — XS,

which sends a vector field X to its action on the local functional S.
The cokernel of this operator is the quotient of P(C*(U)) by the ideal Ig;(U)
generated by the Euler-Lagrange equations. We thus let

HO(Obsg (U)) = P(C¥(U))/ 1.

As U varies, this construction produces a factorization algebra on M, which we call
the factorization algebra of classical observables associated to the action functional
S.

7.0.1 Lemma. IfS = —% f d(A+m>)p, then this definition of classical observables
coincides with the one we discussed earlier:

HO(Obss (U)) = H(Obs™ (1))

where HO(ObsCZ(U )) is defined, as earlier, to be the quotient of P(C™(U)) by the
ideal Igr(U) of the Euler-Lagrange equations.

This result is a version of elliptic regularity, and we prove it later, in Chapter 4.

Now the challenge we face should be clear. If S is the action functional for
the free field theory, then we have a factorization algebra of classical observables.
This factorization algebra deforms in two ways. First, we can deform it into the
factorization algebra of quantum observables for a free theory. Second, we can
deform it into the factorization algebra of classical observables for an interacting
field theory. The difficulty is to perform both of these deformations simultaneously.

To construct the observables of an interacting field theory, we use the renormal-
ization technique of Costello (2011b). In Costello (2011b), the first author gives a
definition of a quantum field theory and a cohomological method for constructing
field theories. A field theory as defined in Costello (2011b) gives us (essentially
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from the definition) a family of divergence operators
Div[L] : Vect.(M) — P(C*(M)),

one for every L > 0. These divergence operators, for varying L, can be conjugated
to each other by continuous linear isomorphisms of @C(M)) and P(C®(M)).
However, for a proper open subset U, these divergence operators do not map
@C(U)) into P(C®(U)). However, roughly speaking, for L very small, the op-
erator Div[L] only increases the support of a vector field in Vect, (U)) by a small
amount outside of U. For small enough L, it is almost support-preserving. This
property turns out to be enough to define the factorization algebra of quantum ob-
servables.

This construction of quantum observables for an interacting field theory is
given in Volume 2, which is the most technically difficult part of this work. Be-
fore tackling it, we will develop more language and explore more examples. In
particular, we will

o develop some formal and structural aspects of the theory of factoriza-
tion algebras;

e analyze in more detail the factorization algebra associated to a free
theory;

e construct and analyze factorization algebras associated to vertex alge-
bras such as the Kac-Moody vertex algebra;

e develop classical field theory using a homological approach arising
from the BV formalism; and

e flesh out the description of the factorization algebra of classical ob-
servables we have sketched here.

The example of this chapter, however, already exhibits the central ideas.



CHAPTER 3

Prefactorization algebras and basic examples

In this chapter we will give a formal definition of the notion of prefactorization
algebra. With the definition in hand, we proceed to examine several examples that
arise naturally in mathematics. In particular, we explain how associative algebras
can be viewed as prefactorization algebras on the real line, and when the converse
holds.

We also explain how to construct a prefactorization algebra from a sheaf of Lie
algebras on a manifold M. This construction is called the factorization envelope,
and it is related to the universal enveloping algebra of a Lie algebra as well as
to Beilinson-Drinfeld’s notion of a chiral envelope. Although the factorization
envelope construction is very simple, it plays an important role in field theory. For
example, the factorization algebra for any free theories is a factorization envelope,
as is the factorization algebra corresponding to the Kac-Moody vertex algebra.
More generally, factorization envelopes play an important role in our formulation
of Noether’s theorem for quantum field theories.

Finally, when the manifold M is equipped with an action of a group G, we
describe what a G-equivariant prefactorization algebra is. We will use this notion
later in studying translation-invariant field theories (see Section 8) and holomor-
phically translation-invariant field theories (see Chapter 5).

1. Prefactorization algebras

In this section we will give a formal definition of the notion of a prefactor-
ization algebra, starting concretely and then generalizing. In the first subsection,
using plain language, we describe a prefactorization algebra taking values in vec-
tor spaces. The reader is free to generalize by replacing “vector space” and “linear
map” with “object of a symmetric monoidal category C” and “morphism in C.”
(Our favorite target category is cochain complexes.) The next subsections give a
concise definition using the language of multicategories (also known as colored op-
erads) and allow an arbitrary multicategory as the target. In the final subsections,
we describe the category (and multicategory) of such prefactorization algebras.

1.1. The definition in explicit terms. Let M be a topological space. A pref-
actorization algebra ¥ on M, taking values in vector spaces, is a rule that assigns
a vector space ¥ (U) to each open set U ¢ M along with the following maps and
compatibilities.

e There is a linear map m%,/ :F(U) - F(V) for each inclusion U C V.

37
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every finite collection of open sets where each U; C V and the U; are
pairwise disjoint. The following picture represents the situation.

v my I F (U @ @ F (Uy) — F(V)

e The maps are compatible in the obvious way, so thatif U; jLI- - -LU;,, C
Viand Vi U--- UV, € W, the following diagram commutes.

R Q" FWU) ———— R FV)

~

F W)

Thus ¥ resembles a precosheaf, except that we tensor the vector spaces rather than
take their direct sum.
For an explicit example of the associativity, consider the following picture.

e N
u) v
:‘.-‘// s FWU11)®F (U12)®@F (Ua1)
i:-.'/ @ Vs N ~ l
PR @ )i F(V)®F (V2) ——— F(W)

Thecaseof k=n; =2,n, =1

These axioms imply that (@) is a commutative algebra. We say that ¥ is
a unital prefactorization algebra if F(0) is a unital commutative algebra. In this
case, ¥ (U) is a pointed vector space by the image of the unit 1 € ¥ (0) under the
structure map ¥ (0) — F(U). In practice, for our examples, ¥ (0) is C, R, C[[#A]],
or R[[%]].
Example: The crucial example to bear in mind is an associative algebra. Every
associative algebra A defines a prefactorization algebra A/%’ on R, as follows. To
each open interval (a, b), we set Afet((a,b)) = A. To any open set U = []; 1},
where each /; is an open interval, we set ¥ (U) = ®j A. The structure maps simply
arise from the multiplication map for A. Figure 1 displays the structure of A/,
Notice the resemblance to the notion of an £ or A, algebra. (One takes an infinite
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a®b®c € AQARA
> ab® c € A®A

! ! !

abc € A

FiGURE 1. The prefactorization algebra A/’ of an associative al-
gebra A

tensor products of unital algebras, as follows. Given an infinite set /, consider the
poset of finite subsets of /, ordered by inclusion. For each finite subset J C I, we
can take the tensor product A’ = (X)J.EJA. For J < J’, we define a map A’ — A7

by tensoring with the identity 1 € A for every j € J’\J. Then A’ is the colimit over
this poset.) &

Example: Another important example for us is the symmetric algebra of a pre-
cosheaf. Let F be a precosheaf of vector spaces on a space X. (For example,
consider F' = C;° the compactly supported smooth functions on a manifold.) The
functor ¥ = Sym F : U — Sym(F(U)) defines a precosheaf of commutative al-
gebras, but it also a prefactorization algebra. For instance, let U and V be disjoint
opens. The structure maps F(U) — F(U U V) and F(U) — F(U U V) induce a
canonical map
FU)® F(V) - F(UUYV),

and so we obtain a natural map Sym(F(U) & F(V)) — Sym F(U U V). But
FWU)®F (V) = Sym(F(U)) ® Sym(F(V)) = Sym(F(U) & F(V)),
so there is a natural map
FU)F(V)—>FWUUV).
In a similar way, one can provide all the structure maps to make ¥ a prefactoriza-

tion algebra. &

In the remainder of this section, we describe two other ways of phrasing this
idea, but the reader who is content with this definition and eager to see examples
should feel free to jump ahead, referring back as needed.

1.2. Prefactorization algebras as algebras over an operad. We now pro-
vide a succinct and general definition of a prefactorization algebra using the effi-
cient language of multicategories. (See Appendix 2.3 for a quick overview of the
notion of a multicategory, also known as a colored operad. Note that we mean the
symmetric version of such definitions.)

1.2.1 Definition. Let Disj,, denote the following multicategory associated to M.

e The objects consist of all connected open subsets of M.
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e For every (possibly empty) finite collection of open sets {Uy}qea and
open set 'V, there is a set of maps Disj,({Ugleea | V). If the U, are
pairwise disjoint and all are contained in V, then the set of maps is a
single point. Otherwise, the set of maps is empty.

o The composition of maps is defined in the obvious way.

A prefactorization algebra just is an algebra over this colored operad Disj,,.

1.2.2 Definition. Let C be a multicategory. A prefactorization algebra on M taking
values in C is a functor (of multicategories) from Disj,, to C.

Since symmetric monoidal categories are special kinds of multicategories, this
definition makes sense for C any symmetric monoidal category.

Remark: If C is a symmetric monoidal category under coproduct, then a precosheaf
on M with values in C defines a prefactorization algebra valued in C. Hence,
our definition broadens the idea of “inclusion of open sets leads to inclusion of
sections” by allowing more general monoidal structures to “combine” the sections
on disjoint open sets. &

Note that if # is any prefactorization algebra, then 7 () is a commutative
algebra object of C.

1.2.3 Definition. We say a prefactorization algebra ¥ is unital if the commutative
algebra F (0) is unital.

Remark: There is an important variation on this definition where one weakens the
requirement that the composition of structure maps holds “on the nose” and in-
stead requires homotopy coherence. For example, given disjoint opens U; and U,
contained in V, which is then contained in W, we do not require that mf,{,"uz =
m‘v/v ° mgl’Uz but that there is a “homotopy” between these maps. This kind of
situation arises naturally whenever the target category is best viewed as an oo-
category, such as the category of cochain complexes. We will not develop here the
formalism necessary to treat homotopy-coherent prefactorization algebras because
our examples and constructions always satisfy the strictest version of composition.
The reader interested in seeing this variant developed should see the treatment in
Lurie (n.d.b). (We remark that one typically has “strictification” results that en-
sure that a homotopy-coherent algebra over a colored operad can be replaced by a
weakly-equivalent strict algebra over a colored operad, so that working with strict
algebras is sufficient for many purposes.) &

1.3. Prefactorization algebras in the style of precosheaves. Any multicate-
gory C has an associated symmetric monoidal category SC, which is defined to be
the universal symmetric monoidal category equipped with a functor of multicate-
gories C — SC. We call it the symmetric monoidal envelope of C. Concretely, an
object of SC is a formal tensor product a; ® - - - ® a, of objects of C. Morphisms
in SC are characterized by the property that for any object b in C, the set of maps
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SC(a; ® - - - ® a,, b) in the symmetric monoidal category is exactly the set of maps
C(ayi,...,an} | b) in the multicategory C.

We can give an alternative definition of prefactorization algebra by working
with the symmetric monoidal category S Disj,, rather than the multicategory Disj,,.

1.3.1 Definition. Let S Disj,, denote the following symmetric monoidal category.

e An object of SDisj,, is a formal finite sequence [Vy,...,V,] of opens
Viin M.
o A morphism F : [Vy,..., V] = [Wy,..., W,] consists of a surjective

function¢ : {1,...,m} — {1,...,n}and a morphism f; € Dist({Vk}kew(j) (W)
foreach1 < j<n.

o The symmetric monoidal structure on S Disj,, is given by concatenta-
tion.

The alternative definition of prefactorization algebra is as follows. It resembles
the notion of a precosheaf (i.e., a functor out of some category of opens) with the
extra condition that it is symmetric monoidal.

1.3.2 Definition. A prefactorization algebra with values in a symmetric monoidal
category € is a symmetric monoidal functor S Disj,, — €.

Remark: Although “algebra” appears in its name, a prefactorization algebra only
allows one to “multiply” elements that live on disjoint open sets. The category
of prefactorization algebras (taking values in some fixed target category) has a
symmetric monoidal product, so we can study commutative algebra objects in that
category. As an example, we will consider the observables for a classical field
theory. O

1.4. Morphisms and the category structure. We now explain how prefac-
torization algebras form a category.

1.4.1 Definition. A morphism of prefactorization algebras ¢ : F — G consists of
amap ¢y : F(U) = G(U) for each open U C M, compatible with the structure
maps. That is, for any open V and any finite collection Uy, ..., Uy of pairwise
disjoint open sets, each contained in V, the following diagram commutes:

¢U1®"'®¢Uk
FUD® - ®@FU) —— GU)®---0GU)
l l
F(V) ., G(V)

Likewise, all the obvious associativity relations are respected.

Remark: When our prefactorization algebras take values in cochain complexes, we
require the ¢y to be cochain maps, i.e., they each have degree 0 and commute with
the differentials. &

1.4.2 Definition. On a space X, we denote the category of prefactorization alge-
bras on X taking values in the multicategory C by PreFA(X, C).
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Remark: When the target multicategory C is a model category or dg category or
some other kind of higher category, the category of prefactorization algebras natu-
rally forms a higher category as well. Given the nature of our constructions and ex-
amples in the next few chapters, such aspects do not play a prominent role. When
we define factorization algebras in Chapter 6, however, we will discuss such is-
sues. &

1.5. The multicategory structure. Let SC denote the enveloping symmetric
monoidal category of the multicategory C (see Section 2.3). Let ® denote the
symmetric monoidal product in SC. Any prefactorization algebra valued in C gives
rise to one valued in SC.

There is a natural tensor product on PreFA(X, SC), as follows. Let F,G be
prefactorization algebras. We define F ® G by

(FeG)U) = F(U)®G(),

and we simply define the structure maps as the tensor product of the structure maps.
For instance, if U C V, then the structure map is

m(F)g ®m(G)5 C(FRG)U)=FU)®GWU) » FIV)®G(V) =(FQG)V).

1.5.1 Definition. Let PreFA,,.(X, C) denote the multicategory arising from the sym-
metric monoidal product on PreFA(X,SC). That is, if F1,...F,,G are prefactor-
ization algebras valued in C, we define the set of multi-morphisms to be

PreFA,,.(F1,--- ,F, | G) =PreFA(F1 ® --- ® F,,, G),
the set of maps of SC-valued prefactorization algebras from F1 ® - - - ® Fy, to G.

2. Associative algebras from prefactorization algebras on R

We explained above how an associative algebra provides a prefactorization
algebra on the real line. There are, however, prefactorization algebras on R that do
not come from associative algebras. Here we will characterize those that do arise
from associative algebras.

2.0.1 Definition. Let F be a prefactorization algebra on R taking values in the
category of vector spaces (without any grading). We say F is locally constant if
the map ¥ (U) — F (V) is an isomorphism for every inclusion of intervals U C V.

2.0.2 Lemma. Let ¥ be a locally constant, unital prefactorization algebra on R
taking values in vector spaces. Let A = F(R). Then A has a natural structure of
an associative algebra.

Remark: Recall that ¥ being unital means that the commutative algebra ¥ (0) is
equipped with a unit. We will find that A is an associative algebra over ¥ (0). <

Proor. For any interval (a, b) C R, the map

Fa,b) > FR)=A
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is an isomorphism. Thus, we have a canonical isomorphism
A =F((a, b))

for all intervals (a, b).
Notice that if (a, b) C (c, d) then the diagram

A —> F((a, b))
d jiii‘z;
A—=F((c,d))

commutes.
The product map m : A® A — A is defined as follows. Leta < b < ¢ < d.
Then, the prefactorization structure on ¥ gives a map

¥ ((a, b)) ® F ((c,d)) — F((a,d)),
and so, after identifying ¥ ((a, b)), ¥ ((c,d)) and ¥ ((a, d)) with A, we get a map
A®A — A.

This is the multiplication in our algebra.
It remains to check the following.

((1)) This multiplication doesn’t depend on the intervals (a,b) U (c,d) C
(a,d) we chose, as long as (a, b) < (c,d).
((i1)) This multiplication is associative and unital.

This is an easy (and instructive) exercise. O

3. Modules as defects

We want to explain another simple but illuminating class of examples, and then
we apply this perspective in the context of quantum mechanics. We will work with
prefactorization algebras taking values in vector spaces with the tensor product as
symmetric monoidal structure.

3.1. Modules as living at points. We described already how to associate a
prefactorization algebra ¥4 on R to an associative algebra A. It is easy to modify
this construction to describe bimodules, as follows. Let A and B be associative
algebras and M an A — B-bimodule, i.e., M is a left A-module and a right B-module
and these structures are compatible in that (am)b = a(mb) for alla € A, b € B, and
m € M. We now construct a prefactorization algebra ¥3; on R that encodes this
bimodule structure.

Pick a point p € R. On the half-line {x € R | x < p}, Fu is given by Fy:
to an interval I = (fy,t;) with 11 < p, Fy () = A, and the structure map for
inclusion of finitely many disjoint intervals into a bigger interval is determined by
multiplication in A. Likewise, on the half-line {x € R | p < x}, s is given by
¥ . Intervals containing p are determined, though, by M. When we consider an
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a®@m®b € AQMQ®B

T ! |

_———— —— W am®b € M®B
. amb € M

FiGure 2. The prefactorization algebra ¥, for the A — B-bimodule M

interval I = (#y, 1) such that 7o < p < t1, we set Fy(I) = M. The structure maps
are also determined by the bimodule structure. For example, given

So<s1<fph<p<ti <uy<ui,
we have

Fm((so0, s1) U (to, 1) U (ug, u1)) = Fu((s0, 51)) ® Fu((to, 1)) ® Fu(uo, u1))
=AQMQ®B

and the inclusion of these three intervals into (s, u1) is the map

Fu((s0,51) ® Fu((to, 1)) ® Far)(uo, u1)) —  Fu((so,u1)) .

a®meb — amb

The definition of a bimodule ensures that we have a prefactorization algebra. See
Figure 2.

There is a structure map that we have not discussed yet, though. The inclusion
of the empty set into an interval / containing p means that we need to pick an
element m; of M for each interval. The simplest case is to fix one element m €
M and simply use it for every interval. If we are assigning the unit of A as the
distinguished element for 7, on every interval to the left of p and the unit of B for
every interval to the right of p, then the distinguished elements, then the structure
maps we have given clearly respect these distinguished elements.

These distinguished elements, however, can change with the intervals, so long
as they are preserved by the structure maps. For an interesting example, see the
discussion of quantum mechanics below.

Let us examine one more interesting case. Suppose we have algebras A, B, and
C, and an A — B-bimodule M and a B — C-bimodule N. There is a prefactorization
algebra on R describing the natural algebra for this situation.

Fix points p < g. Let 3y be the prefactorization algebra on R such that

on {x € R | x < p}, it agrees with F4,
on{x e R|p < x<g}, it agrees with Fp,
on {x € R | g < x}, it agrees with F¢,

and

to intervals (#p, t;) with tp < p < #; < g, it assigns M, and
to intervals (#g, t;) with p < #gp < g < 11, it assigns N.
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In other words, on {x € R | x < ¢}, this prefactorization algebra Fj; y behaves like
Fum, and like Fyon{x € R | p < x}.

We still need to describe what it does on an interval I of the form (T, T;) with
To < p < g < T. There is a natural choice, dictated by the requirement that we
produce a prefactorization algebra.

We know that ¥, y(I) must receive maps from M and N, by considering
smaller intervals that only overlap either p or g. It also receives maps from A,
B, and C from intervals not hitting these marked points, but these factor through
intervals containing one of the marked points. Finally, we must have a structure
map

U:MeN — Fyn()

for each pair of disjoint intervals hitting both marked points.
Note, in particular, what the associativity condition requires in the situation
where we have three disjoint intervals given by

So<p<s1<tpy<th <uy<gqg<ui,

contained in /. We can factor the inclusion of these three intervals through the pair
of intervals (sg,#1) U (ug, u1) or the pair of intervals (sg, s1) LI (fg, #1) Thus, our
structure map

M®B®N — Fyun()

must satisfy that u((mb)®n) = u(m®(bn)) foreverym € M, b € B,and n € N. This
condition means that F7y(/) receives a canonical map from the tensor product
M ®p N.

Hence, the most natural choice is to set ¥y ny(I) = M ®p N. One can make
other choices for how to extend to these longer intervals, but such a prefactorization
algebra will receive a map from this one. The local-to-global principle satisfied by
a factorization algebra is motivated by this kind of reasoning.

Remark: We have shown how thinking about prefactorization algebras on a real
line “decorated” with points (i.e., with a kind of stratification) reflects familiar
algebraic objects like bimodules. By moving into higher dimensions and allow-
ing more interesting submanifolds and stratifications, one generalizes this familiar
algebra into new, largely-unexplored directions. See Ayala et al. (n.d.a) for an ex-
tensive development of these ideas in the setting of locally constant factorization
algebras. &

3.2. Standard quantum mechanics as a prefactorization algebra. We will
now explain how to express the standard formalism of quantum mechanics in
the language of prefactorization algebras, using the kind of construction just de-
scribed. As our goal is to emphasize the formal structure, we will work with a
finite-dimensional complex Hilbert space and avoid discussions of functional anal-
ysis.

Remark: In a sense, this section is a digression from the central theme of the book.
Throughout this book we take the path integral formalism as fundamental, and
hence we do not focus on the Hamiltonian, or operator, approach to quantum
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physics. Hopefully, juxtaposed with our work in Section 3, this example clarifies
how to connect our methods with others. &

Let V denote a finite-dimensional complex Hilbert space V. That is, there is a
nondegenerate symmetric sesquilinear form (—,—) : V. X V — C so that

(A, V) = A (v,V)
where A, A’ are complex numbers and v,v" are vectors in V. Let A = End(V)

. . . . T
denote the algebra of endomorphisms, which has a =-structure via M* = M , the
conjugate-transpose. The space V is a representation of A, and the =-structure is
characterized by the property that

(M*v,v') = (v, MV).

It should be clear that one could work more generally with a Hilbert space equipped
with the action of a x-algebra of operators, aka observables.

Now that we have fixed the kinematics of the situation, let’s turn to the dynam-
ics. Let (U,);er be a one-parameter group of unitary operators on V. Since we are
in the finite-dimensional setting, there is no problem identifying

U[ — eilH

for some Hermitian operator H that we call the Hamiltonian. We view V as a state
space for our system, A as where the observables live, and H as determining the
time evolution of our system.

We now rephrase this structure to make it easier to articulate via the factoriza-
tion picture. Let V denote V with the conjugate complex structure. We will denote
elements of V by “kets” |v’) and elements of v by “bras” (v | , and we provide a
bilinear pairing between them by

vy =@V).
We equip V with the right A-module structure by
W|M=(M"V|

We will write (v | M | v} as can think of M acting on V' from the left or on v from
the right and it will produce the same number.
Our goal is to describe a scattering-type experiment.

e Attime f = 0, we prepare our system in the initial state (v;, | .
o We modify the governing Hamiltonian over some finite time interval
(i.e., apply an operator, or equivalently, an observable).
e At time t = T, we measure whether our system is in the final state
| Vour)-
If we run this experiment many times, with the same initial and final states and the
same operator, we should find a statistical pattern in our data. If an operator O acts
during a time interval (z,¢’), then we are trying to compute the number

Win | €O T |y,
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Our formalism does not include the idealized situation of an operator O acting at
a single moment #( in time, but in the appropriate limit of shorter and shorter time
intervals around fy, we would compute

itoH i(T—t9)H
<Vin |elt0 Oel( o) Ivout>s

which agrees with the usual prescription.

Note that we use a bra (v;, | for the “incoming” state and a ket | v,,) for
the“outgoing” state so that the left-to-right ordering will agree with the left-to-
right ordering of the real line viewed as a time-line. The prefactorization algebra F
on the interval [0, T'] describing this situation has the following structure. Interior
open intervals describe moments when operators can act on our system. An interval
that contains O (but not the other end) should describe possible “incoming” states
of the system; dually, an interval containing the other endpoint should describe
“outgoing” states. Let us now spell things out explicitly.

To open subintervals, our prefactorization algebra F assigns the following vec-
tor spaces:

[0,/) >V
(s,t)—> A
@, T]—>V
e [0,T]— C.

In light of our discussion about modules in the preceding section, note that the

natural choice for the value F([0, T']) is the vector space V®,V. However, ‘_/®End(\/)

V is isomorphic to the ground field C due to the compatibility of the left and right

actions with the inner product. We must now describe the structure maps coming

from inclusion of intervals; we will describe enough so that the mechanism is clear.
The case that determines the rest is that the inclusion

[0,20) U (21, 12) L (13, T]1 C [0, T]

corresponds to the structure map

VeA®V - C
(o | ®0® |v1) > (v | OIS |y -

In other words, the system evolves according the Hamiltonian during the closed
intervals in the complement of opens during which we specify the incoming and
outgoing states and the operator.

Note that if we set O = ¢/27H then we obtain

(vo | & H [y

and so recover the expected value of being in state (vy | at time ¢y and going to
state | vy) at time #3. Setting #3 = fy, we recover the inner product on V.

For another example of structure maps, the inclusion (o, 71) C (t),]) goes to
0 > 0 WHO~H More generally, for k disjoint open intervals inside a big
open interval

(fo, 1) U -+ LI (tap—2, tog—1) C (19, 17)s
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we again time-order the operators and then multiply with evolution operators in-
serted for the closed intervals between them: the structure map for F is

0,® @0 > W0 WHY, =t . 0 pilti=1i-)H

Note that these structure maps reduce to those for an arbitrary associative algebra

if we set H = 0 and hence have the identity map as the evolution operator. (In

general, a one-parameter semigroup of algebra automorphisms can be used like

this to “twist” the prefactorization algebra associated to an associative algebra.)
As further examples, we have:

e the inclusion [0, 7) c [0, #’) has structure map (vo | > (vo | €/ ~DH,

e the inclusion (¢, T'] C (¢, T] has structure map |v;) > e/~ |y,

e the inclusion [0, 79) U (#1,%2) C [0, ") has structure map (vo | ® O
<VO |ei(’1_t°)HOei(t,_’2)H.

All these choices ensure that we are free to choose what happens during open inter-
vals but that the system evolves according to H during their closed complements.
In this way, the prefactorization algebra encodes the basic abstract structure of
quantum mechanics. The open interior (0, 7") encodes the algebra of observables,
and the boundaries encode the state spaces.

The attentive reader might notice that we have not discussed, e.g., the structure
map associated to (tp, ;) C [0,7"). Here we need to use the distinguished elements
in F((fo,11)) = A and F([0,7)) = V arising from the inclusion of the empty set
into these opens. If we fix (v;, | as the “idealized” initial state at time 0, then we
set (v, | ¢ 1o be the distinguished element in F([0,1")) = V. The distinguished
element of F((ty, t1)) is the evolution operator el=1H Thys, the structure map for
(to, 1) C [0,¢") is naturally

O — <vin | eltoHOel(t —t)H

We now describe the dual situation for intervals containing the other endpoint.
Here we specify an “idealized” final state |v,,) so that the distinguished element
of F((t,T)) is &T9H | y,..). We do not need these initial or final states to recover
the quantum mechanical formalism from the prefactorization algebra, so it is inter-
esting that the prefactorization perspective pushes towards fixing these boundary
states in the form of the distinguished elements.

Remark: Although we have explained here how to start with the standard ingredi-
ents of quantum mechanics and encode them as a prefactorization algebra, one can
also turn the situation around and motivate (or interpret), via the factorization per-
spective, aspects of the quantum mechanical formalism. For instance, time-reversal
amounts to reflection across a point in R. Requiring a locally constant prefactoriza-
tion algebra on R to be equivariant under time-reversal corresponds to equipping
the corresponding associative algebra A with an involutive algebra antiautomor-
phism. In other words, the prefactorization algebra corresponds to a #-algebra A.
Likewise, suppose we want a prefactorization algebra on a closed interval [0, T']
such that it corresponds to A on the open interior. The right end point corresponds
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to a left A-module V, viewed as the “outgoing” states. It is natural to want the “in-
coming” states — given by some right A-module V — to be “of the same type” as
V (e.g., abstractly isomorphic) and to want the global sections to be C. This forces
us to have a map

VeA®V — C.

This map induces a pairing between V and V, which provides a pre-Hilbert struc-
ture. &

Remark: Our construction above captures much of the standard formalism of quan-
tum mechanics, but there are a few loose ends to address.

First, in standard quantum mechanics, a state is not a vector in V but a line.
Above, however, we fixed vectors (v;, | and | v,), so there seems to be a dis-
crepancy. The observation that rescues us is a natural one, from the mathematical
viewpoint. Consider scaling the initial and final states by elements of C*. This de-
fines a new factorization algebra, but it is isomorphic to what we described above,
and the expected value “(vo|Ov;)” of an operator depends linearly in the rescaling
of the input and output vectors. More precisely, there is a natural equivalence rela-
tion we can place on the factorization algebras described above that corresponds to
the usual notion of state in quantum mechanics. In other words, we could make a
groupoid of factorization algebras where the underlying vector spaces and structure
maps are all the same, but the distinguished elements are allowed to change.

Another issue that might bother the reader is that our formalism only matches
nicely with experiments that resemble scattering experiments. It does not seem
well-suited to descriptions of systems like bound states (e.g., an atom sitting qui-
etly, minding its own business). For such systems, we might consider running
over the whole space of states, which is described as a groupoid in the previous
paragraph. Alternatively, we might drop the endpoints and simply work with the
factorization algebra on the open interval, which focuses on the algebra of opera-
tors. &

4. A construction of the universal enveloping algebra

Let g be a Lie algebra. In this section we describe a procedure that produces
the universal enveloping algebra Ug as a prefactorization algebra on R. This con-
struction is useful both because it is a model for a more general result about E,,
algebras (see Section 4) and because it appears in several of our examples (such
as the Kac-Moody factorization algebra). For a mathematician, it may be useful to
see techniques similar to those we use in Section 2 shorn of any connection with
physics, so that the underlying process is clearer.

Let g® denotes the cosheaf on R that assigns (Q(U) ® g,d4r) to each open U,
with dggr the exterior derivative. This is a cosheaf of cochain complexes, but it is
only a precosheaf of dg Lie algebras. Note that the cosheaf axiom involves the use
of coproducts, and the coproduct in the category of dg Lie algebras is not given by
direct sum of the underlying cochain complexes. In fact, g* is a prefactorization
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algebra taking value in dg Lie algebras equipped with direct sum & as the symmet-
ric monoidal product (here direct sum means the sum of the underlying cochain
complexes, which inherits a natural Lie bracket).

Let C.} denote the Chevalley-Eilenberg complex for Lie algebra homology,
written as a cochain complex. In other words, C.D is the graded vector space
Sym(b[1]) with a differential determined by the bracket of ). See Appendix 3 for
the definition and further discussion of this construction.

Our main result shows how to construct the universal enveloping algebra Ug
using C.(g%).

4.0.1 Proposition. Let H denote the cohomology prefactorization algebra of C.(g%).
That is, we take the cohomology of every open and every structure map, so

H(U) = H(C.(s*(U)))

for any open U. Then H is locally constant, and the corresponding associative
algebra is isomorphic to Ug, the universal enveloping algebra of g.

Remark: Recall Lemma 2.0.2, which says that every locally constant prefactoriza-
tion algebra on R corresponds to an associative algebra. This proposition above
provides a homological mechanism for recovering the universal enveloping alge-
bra of a Lie algebra, but the reader has probably noticed that we could apply the
same construction with R replaced by any smooth manifold M. In Chapter 6, we
will explain how to understand what this general procedure means. &

Proor. Local constancy of H is immediate from the fact that, if I C J is the
inclusion of one interval into another, the map of dg Lie algebras

QNHeg—> Q)¢

is a quasi-isomorphism. We let A, be the associative algebra constructed from H
by Lemma 2.0.2.

The underlying vector space of A, is the space H(I) for any interval /. To be
concrete, we will use the interval R, so that we identify

Ag = HR) = H(C.(Q:(R)®9)).

We now identify that vector space.

The dg Lie algebra Q;(R) ® g is concentrated in degrees O and 1 and maps
quasi-isomorphically to its cohomology H:(R) ® g = g[—1], which is concentrated
in degree 1 by the Poincaré lemma. This cohomology is an Abelian Lie algebra
because the cup product on H} (/) is zero. It follows that C.(Q}(R) ® g) is quasi-
isomorphic to the Chevalley-Eilenberg chains of the Abelian Lie algebra g[—1],
which is simply Sym g. Thus, as a vector space, A, is isomorphic to the symmetric
algebra Sym g.

There is a map

D:g—- A
that sends an element X € g to £ ® X where € € Hl (1) is a basis element for the
compactly supported cohomology of the interval /; we require the integral of € to
be 1. We will show that ® is a map of Lie algebras, where A, is given the Lie
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bracket coming from the associative structure. This result immediately implies the
theorem, as we then have an map of associative algebra ® : Ug — A, that is an
isomorphism of vector spaces.

Let us check explicitly that ® is a map of Lie algebras. Let 6 > 0 be small
number, and let fy € C2°(—6,6) be a compactly supported smooth function with
f fodx = 1. Let fi(x) = fo(x—f). Note that f; is supported on the interval (t—6, t+9).
If X € g, a cochain representative for ®(X) € A, is provided by

fodx® X € QL((-6,6) ® .

Indeed, because every f; dx is cohomologous to fy dx in Q!(R), the element f; dx®
X is a cochain representative of ®(X) for any ¢.
Given elements a, 8 € A,, the product « - B is defined as follows.

(()) We choose intervals I, J with I < J.

((i1)) We regard « as an element of H (/) and B as an element of H(J) using
the inverses to the isomorphisms H (/) — H(R) and H(J) — H(R)
coming from the inclusions of / and J into R.

((ii1)) The product « - S is defined by taking the image of @ ® 8 under the
factorization structure map

H() ® H(J) = H(R) = Aq.

Let us see how this works with our representatives.

The cohomology class [f; dx ® X] € H(¢t — 6,¢ + 6) becomes ®(X) under the
natural map from H(t — 6, ¢ + 6) to H(R). If we take § to be sufficiently small, the
intervals (-6, 6) and (1 — 6, 1 + 0) are disjoint. It follows that the product ®(X)D(Y)
is represented by the cocycle

(fodx® X)(fi dx®Y) € Sym*(Q,(R) ® 9) C CLQR) ® ).
Similarly, the commutator [®(X), ®(Y)] is represented by the expression
(fodxeX)(f1idx®Y) - (fodx® Y)(f-1 dx ® X).

It suffices to show that this cocycle in C.(Q(R) ® g) is cohomologous to ®([X, Y]).
Note that the 1-form fj dx — f-; dx has integral 0. It follows that there exists a
compactly supported function # € C°(R) with

ddRh = f_1 dx — f] dx.

We can assume that 4 takes value 1 in the interval (=9, ).
We now calculate the differential of the element

(fodx®X)(h®Y) € C.(Q(R) ® 9).
We have
d(fodx@X)(h®Y)) = (fodx®X)(dh®Y) + fohdx® [X, Y]
=(fodx@X)((f.1 — fdx®Y) + fohdx® [X, Y].

Since A takes value 1 on the interval (-6, §), we know foh = fy. This equation tells
us that a representative for [D(X), ©(Y)] is cohomologous to O([X, Y]). O
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5. Some functional analysis

Nearly all of the examples of factorization algebras that we will consider in
this book will assign to an open subset, a cochain complex built from vector spaces
of analytical provenance: for example, the vector space of smooth sections of a
vector bundle or the vector space of distributions on a manifold. Such vector spaces
are best viewed as being equipped with an extra structure, such as a topology,
reflecting their analytical origin. In this section we will briefly sketch a flexible
multicategory of vector spaces equipped with an extra “analytic” structure. More
details are contained in Appendix B.

5.1. Differentiable vector spaces. The most common way to encode the an-
alytic structure on a vector space such as the space of smooth functions on a man-
ifold is to endow it with a topology. Homological algebra with topological vector
spaces is not easy, however. (For instance, topological vector spaces do not form
an abelian category.) To get around this issue, we will work with differentiable
vector spaces. Let us first define the slightly weaker notion of a C*-module.

5.1.1 Definition. Ler Mfld be the site of smooth manifolds, i.e., the category of
smooth manifolds and smooth maps between them, where a cover is a surjective
local diffeomorphism.

Let C* denote the sheaf of rings on Mfld that assigns to any manifold M the
commutative algebra C*(M). A C*-module is a module sheaf over C* on Mfld.

In other words, to each manifold M, a C*-module ¥ assigns a module F (M)
over the algebra C*(M), and for any map of manifolds f : M — N, the pullback
map f* : F(N) = F(M) is a map of C*(N)-modules. For example, if V is any
topological vector space, then there is a natural notion of smooth map from any
manifold M to V (see, e.g., Kriegl and Michor (1997)). The space C*(M, V) of
such smooth maps is a module over the algebra C*(M). Since smoothness is a
local condition on M, sending M to C*(M, V) gives a sheaf of C*°-modules on the
site Mfld.

As an example of this construction, let us consider the case when V is the space
of smooth functions on a manifold N, equipped with its usual Fréchet topology.
One can show that for each manifold M, the space C*(M,C*(N)) is naturally
isomorphic to the space C*(M X N) of smooth functions on M X N.

As we will see shortly, we lose very little information when we view a topo-
logical vector space as a C*°-module.

Sheaves of C*-modules on Mfld that arise from topological vector spaces are
endowed with an extra structure: we can always differentiate smooth maps from a
manifold M to a topological vector space V. Differentiation can be viewed as an
action of the vector fields on M on the vector space C*(M, V). Dually, it can be
viewed as coming from a connection

V:C®(M, V) - QY(M, V),
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where Q!(M, V) is defined to be the tensor product
Q'(M, V) = Q' (M) ®cr) C¥(M, V).

This tensor product is just the algebraic one, which is well-behaved because Q' (M)
is a projective C*(M)-module of finite rank.
This connection is flat, in that the curvature

F(V)=VoV:C®M,V)— Q*M,V)

is zero. Flatness ensures that the action of vector fields is actually a Lie algebra
action, so that we get an action of all differential operators on M and not just vector
fields.

This flatness property suggests the following definition.

5.1.2 Definition. Let Q! denote the C®-module that assigns Q' (M) to a manifold
M. For F a C®-module, the C*°-module of k-forms valued in F is the C*-module
QK(F) that assigns to a manifold M, the tensor product QX(M, F) = QK(M) ®c= (M)
F(M).

A connection on a C*-module F is a map of sheaves on the site Mfld,

V:F - QYF),

that satisfies the Leibniz rule on every manifold M. A connection is flat if it is flat
on every manifold M.

A differentiable vector space is a C*-module equipped with a flat connection.
A map of differentiable vector spaces f : F — G is a map of C*-modules that inter-
twines with the flat connections. We denote the set of all such maps by DVS(F, G).

Almost all of the differentiable vector spaces we will consider are concrete
in nature. Indeed, most satisfy the formal definition of a being a concrete sheaf,
which we now explain. Let Set denote the category of sets and let Set(S, 7) denote
the collection of functions from the set S to the set 7. For any sheaf ¥ on Mfld
taking values in Set, there is a natural map ¥ (M) — Set(M, ¥ (x)): each element
of the set (M) has an associated function from the underlying set M to the set
¥ (), the value of the sheaf on a point. We say a sheaf ¥ is concrete if this map
F (M) — Set(M,F (x)) is injective. Hence, for a concrete sheaf, one can think
of any section on M as just a particular function from M to ¥ (x); a section is
just a “smooth” function on M with values in the set 7 (x). As an example of a
concrete sheaf, consider the sheaf X associated to a smooth manifold X, where
X(M) = C*(M, X). In this case, a section of the sheaf X really is just a function to
X. This sheaf just identifies which set-theoretic functions are smooth.

We often work with the differentiable vector space arising from a topological
vector space V, which, just like the example X, simply records which set-theoretic
maps are smooth. For this reason, we will normally think of a differentiable vector
space ¥ as being an ordinary vector space, given by its value on a point ¥ (x),
together with extra structure. We will often refer to the sections 7 (M) (i.e., the
value of the sheaf ¥ on the manifold M) as the space of smooth maps to the value
on a point. If V is a differentiable vector space, we often write C*(M, V) for the
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space of smooth maps from a manifold M. Abusively, we will also often call a map
of differentiable vector spaces simply a smooth map.

5.2. Differentiable cochain complexes. Although we typically work with dif-
ferentiable vector spaces coming from topological vector spaces, the category DVS
is much easier to use — for our purposes — than that of topological vector spaces.
The key reason is that they are (essentially) just sheaves on a site, and homological
algebra for such objects is very well-developed, as we explain in Appendix C.

5.2.1 Definition. A differentiable cochain complex is a cochain complex in the
category of differentiable vector spaces.

A cochain map f : 'V — W of differentiable cochain complexes is a quasi-
isomorphism if the map C*(M,V) — C*(M,W) is a quasi-isomorphism for all
manifolds M. This condition is equivalent to asking that the map be a quasi-
isomorphism at the level of stalks.

We use Ch(DVS) to denote the category of differentiable cochain complexes
and cochain maps. It can be enriched over cochain complexes of vector spaces in
the usual way.

5.3. Differentiable prefactorization algebras. We have defined the notion
of prefactorization algebra with values in any multicategory. In order to discuss
factorization algebras valued in differentiable vector spaces, we need to define a
multicategory structure on differentiable vector spaces. Let us first discuss the
multicategory structure on the C*°-modules.

5.3.1 Definition. Let V,...,V,, W be differentiable vector spaces. A smooth mul-
tilinear map

O:VixX---xV, > W
is a C*-multilinear map © of sheaves that satisfies the following Leibniz rule with
respect to the connections on the V; and W. For every manifold M, and for every
v; € Vi(M), we require that

n
VOO,...,v) = Z(D(vl,...,Vv,-,...,v,,) e Q'(M,W).
i=1

We let DVS(Vy, ..., V, | W) denote this space of smooth multilinear maps.

In more down-to-earth terms, such a @ is a C*(M)-multilinear map ®(M) :
VitM) X - - - X V(M) — W(M) for every manifold M, in a way compatible with the
connections and with the maps V;(M) — V;(N) associated to amap f : N - M of
manifolds.

The category of differentiable cochain complexes acquires a multicategory
structure from that on differentiable vector spaces, where the multi-maps are smooth
multilinear maps that are compatible with the differentials. (Here “compatible”
means precisely the same thing as it does with ordinary vector spaces and cochain
complexes. It means, in the case of unary maps, that we work with cochain maps
and not arbitrary linear maps of graded vector spaces.)
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5.3.2 Definition. A differentiable prefactorization algebra is a prefactorization al-
gebra valued in the multicategory of differentiable cochain complexes.

In words, a differentiable prefactorization algebra ¥ on a space X assigns a
differentiable cochain complex #(U) to every open subset U C X, and a smooth
multi-linear cochain map

FUD) X xF Uy = F(V),

whenever Uy, ..., U, are disjoint opens contained in V.

Note the very different roles played here by the space X, on which the prefac-
torization algebra lives, and the site Mfld of manifolds, on which the differentiable
cochain complexes live. The topology of the space X organizes the algebraic struc-
ture we are interested in. By contrast, the geometry of manifolds encoded in Mfld
organizes the structure of the vector spaces (or cochain complexes) we work with.
Said succinctly, as a substitute for a topology on these vector spaces, we use a sheaf
structure over Mfld.

5.4. Relationship with topological vector spaces. As we have seen, every
topological vector space gives rise to a differentiable vector space. There is a beau-
tiful theory developed in Kriegl and Michor (1997) concerning the precise rela-
tionship between topological vector spaces and differentiable vector spaces. These
results are discussed in much more detail in Appendix B: we briefly summarize
them now.

Let LCTVS denote the category of locally-convex Hausdorff topological vector
spaces, and continuous linear maps. Let BVS denote the category with the same
objects, but whose morphisms are bounded linear maps. Every continuous linear
map is bounded, but not conversely. These categories have natural enrichments
to multicategories, where the multi-maps are continuous (respectively, bounded)
multilinear maps. The category BVS is equivalent to a full subcategory of LCTVS
whose objects are called bornological vector spaces.

Theorem. The functor dif; : LCTVS — DVS restricts to a functor difg : BVS —
DVS, which embeds BVS as a full sub-multicategory of DVS.

In other words: if V, W are topological vector spaces, and if dif}(V), dif;(W)
denote the corresponding differentiable vector spaces, then the maps in DVS from
dif,(V) to dif,(W) are the same as bounded linear maps from V to W. More gen-
erally, if Vi,...,V, and W are topological vector spaces, the bounded multi-linear
maps BVS(Vy,...,V, | W) are the same as smooth multi-linear maps DVS(dif;(V1),
dify(W)).

This theorem tells us that we lose very little information if we think of a topo-
logical vector space as being a differentiable vector space. We just end up thinking
about bounded maps rather than continuous maps.

Remark: On occasion, we will exploit this relationship by using a concept from
topological or bornological vector spaces without profferring a differentiable ana-
log. For example, in a few places we talk about a dense inclusion and use it to show

cdifyf(Vy) |
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that a map out of the bigger space is determined by the subspace. In such cases,
we are working only with bornological vector spaces and depending upon the fact
that difg is a full and faithful functor. &

So far, however, we have not discussed how completeness of topological vector
spaces appears in this context. We need a notion of completeness for a topological
vector space that only depends on smooth maps to that vector space. The relevant
concept was developed in Kriegl and Michor (1997). We will view the category
BVS as being a full subcategory of DVS.

5.4.1 Definition. A topological vector space V € BVS is ¢*-complete, or conve-
nient, if every smooth map c : R — V has an antiderivative.

We denote the category of convenient vector spaces and bounded linear maps
by CVS.

This completeness condition is a little weaker than the one normally studied
for topological vector spaces. That is, every complete topological vector space is
c®-complete.

Proposition. The full subcategory dif. : CVS C DVS is closed under the forma-
tion of limits, countable coproducts, and sequential colimits of closed embeddings.

We give CVS the multicategory structure inherited from BVS. Since BVS is a
full sub multicategory of DVS, so is CVS.

Theorem. The multicategory structure on CVS is represented by a symmetric
monoidal structure ®g.

This symmetric monoidal structure is called the completed bornological tensor
product. If E,F € CVS, this completed bornological tensor product is written
as E&SﬂF . The statement that it represents the multicategory structure means that
smooth (equivalently, bounded) bilinear maps f : E; X E, — F are the same as
bounded linear maps f” : E 1§ﬁEz — F, for objects Ey, E», F of CVS.

When it should cause no confusion, we may use the symbol ® instead of @p
for this tensor product.

5.5. Examples from differential geometry. Let us now give some examples
of differentiable vector spaces. These examples will include the basic building
blocks for most of the factorization algebras we will consider.

Let E be a vector bundle on a manifold X. We let &(X) denote the vector
space of smooth sections of E on X, and we let &;(X) denote the vector space of
compactly supported sections of E on X.

Let us give these vector spaces the structure of differentiable vector spaces, as
follows. If M is a manifold, we say a smooth map from M to & is a smooth section
of the bundle 7} E on M x X. We denote this set of smooth maps C*(M, &(X)).
Sending M to C*(M, &(X)) defines a sheaf of C*-modules on the site of smooth
manifolds with a flat connection, and so a differentiable vector space.
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Similarly, we say a smooth map from M to &;(X) is a smooth section of the
bundle 7y £ on M X X, whose support maps properly to M. Let us denote this set
by C*(M, &.(X)); this defines, again, a sheaf of C*-modules on the site of smooth
manifolds with a flat connection.

Theorem. With this differentiable structure, the spaces &(X) and &.(X) are in
the full subcategory CVS of convenient vector spaces. Further, this differentiable

structure is the same as the one that arises from the natural topologies on &(X)
and &.(X).

The proof (like the proofs of all results in this section) are contained in Appen-
dix B, and based heavily on the book Kriegl and Michor (1997).

Let E be a vector bundle on a manifold X. Throughout this book, we will often
use the notation E(X ) to denote the distributional sections on X, defined by

E(X) = E(X) ®cwx) DX),

where D(X) is the space of distributions on X. Similarly, let EC(X) denote the
compactly supported distributional sections of £ on X. There are natural inclusions

E(X) = EX) = EX),
E(X) > EX) — EX),

by viewing smooth functions as distributions.

Let E' denote the vector bundle EV ® Densy, which possesses a natural vector
bundle pairing ev : E ® E' — Densy. In other words, a smooth section of E and
a smooth section of E' can be paired to produce a smooth density on X. If this
smooth density has compact support, it can certainly be integrated to produce a
real number. With a little more work, one can show that EC(X) is the continuous
dual to &'(X), the space of smooth sections of E ' on X. Likewise, one can show

that &.(X) is the continuous dual to ?(X), the distributional sections of E'.

These topological vector spaces E(X) and EC(X) thus obtain natural differ-
entiable structures via the functor dif;. We have the following description of the
differentiable structure.

Theorem. For any manifold M, a smooth map from M to &(X) is the same as a
smooth linear map

ENX) - CZ(M).

Similarly, a smooth map from M to EC(X) is the same as a smooth linear map

E'(X) - C®(M).

This is a consequence of Lemma 5.2.2. See also Section 2.1 for more discus-
sion.

5.6. Multilinear maps and enriched spaces of maps. The category of dif-
ferentiable vector spaces has a natural tensor product. In other words, it is a sym-
metric monoidal category. The tensor product in DVS is very simple: if V, W are
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differentiable vector spaces, then they are C*-modules (by forgetting the flat con-
nections) so V®c~ W is another C*°-module, but it inherits a natural flat connection
Vy ® Idwy + Idy ®Vy, so we obtain a new differentiable vector space.

One must be careful with this tensor product, however. From the point of view
of analysis, this tensor product is not very meaningful: it is somewhat similar to an
un-completed tensor product of topological vector spaces. For example, if M and N
are manifolds, then C* (M) and C*(N) naturally have the structure of differentiable
vector spaces. It is not true that

() CT(M) ®c~ C*(N) = C*(M X N).

This issue means that our examples will not assign to a disjoint union of opens the
tensor product of values on the components.

The multicategory structure on DVS that we use coincides with this symmetric
monoidal structure. The multicategory structure is better behaved than the sym-
metric monoidal structure: when restricted to the full subcategory CVS the multi-
category becomes the one associated to the symmetric monoidal structure on CVS,
which has good analytical properties (and in particular satisfies the equality in (F)).

Similarly, there is an internal hom in the category of C*-modules, and this
sheaf hom likewise inherits a natural flat connection. We denote this sheaf hom by
Hompys(V, W). This sheaf hom is not as well-behaved as one would hope, how-
ever, and does not capture the concept of “smooth families of maps”. In particular,
it is not true that the value of the sheaf Hompys(V, W) on a point is the vector
space DVS(V, W) of smooth maps from V to W. For any reasonable definition of
the notion of smooth family of maps parametrized by a manifold, a smooth family
of maps parametrized by a point should be simply a map, and the self-enrichment
given by Hompys(V, W) does not satisfy this.

There is, however, another way to enrich the category DVS over itself that
better captures the notion of smooth family of maps. (For a careful treatment, see
Section 6.) Before we define this enrichment, we need the following definition.

5.6.1 Definition. For V a differentiable vector space and M a manifold, let C*(M, V)
denote the differentiable vector space whose value on a manifold N is C*(N X
M, V). The flat connection map

Vo) : C(N,C¥(M, V) — QY(N,C¥(M, V))
is the composition of the flat connection
Vsm : CO(M x N, V) = QUM x N, V) = Q{(M, C*(N, V)) ® QL (N, C* (M, V))
with the projection onto Q' (N, C*(M, V)).

Here the direct sum decomposition of one-forms is a consequence of the fact

that T, splits as the direct sum ), T}, ® ny Ty, where myy : M X N — M and
iy : M X N — N denote the projection maps.
This definition makes the category of differentiable vector spaces into a cate-

gory cotensored over the category of smooth manifolds. Note that C*(M) defines
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a ring object in the category DVS, and for any differentiable vector space V, the
mapping space C*(M, V) is a C*(M)-module.

This construction generalizes in a natural way. If E is a vector bundle on a
manifold M and V is a differentiable vector space, then we can define

CoM,E®V) :=EM) ®coy C°(M, V)

where on the right hand side we are taking tensor products in the category DVS
over the differentiable ring C*(M). Although, in general, tensor products in DVS
are not analytically well-behaved, in this case there are no problems because &' (M)
is a projective C*(M) module of finite rank. We will denote C*°(M,T*M ® E) by
QY(M, E).

5.6.2 Definition. Let Vy,...,V,, W be differentiable vector spaces. Given a mani-
fold M, a smooth family of multi-linear maps V| X --- X V,, > W parametrized by
M is an element of

DVS(Vy,...,V, | C* (M, W))
where we regard C*(M, W) as being a differentiable vector space using the defini-
tion above.

In Section 6 we show that there is a differentiable vector space
Hompys(V1,...,V, [ W)

defined by saying that its value on a manifold M is DVS(Vy,...,V, | C®(M, W)).
The flat connection comes from the natural map

Vesanw) 2 CO(M, W) — QY (M, W),

given by applying the projection in the M-direction to the connection V sy w
(compare to the connection on C*(M, W)).

This definition makes the category DVS into a multicategory enriched in itself,
in such a way that if we evaluate the differentiable Hom-space on a point, we
recover the original vector space of smooth maps.

In this text, whenever we consider a smooth family of maps between differen-
tiable vector spaces, we are always referring to this self-enrichment.

5.7. Algebras of observables. The prefactorization algebras we will use for
most of the book are built as algebras of functions on the convenient vector spaces
& (X), which for us will mean symmetric algebras on their dual spaces. Recall that
&(X) and & .(X) are both convenient vector spaces, and that, in the full subcategory
CVS c DVS of convenient vector spaces, the multicategory is represented by a
symmetric monoidal structure §ﬁ- Recall as well that ®, denotes the completed
projective tensor product in LCTVS.

Proposition. Let E be a vector bundle on a manifold X, and let F be a vector
bundle on a manifold Y. Let &(X) denote the convenient vector space of smooth
sections of E on X, and let #(Y) denote the convenient vector space of smooth
sections of F on Y. Then

EX)@pF(Y)=2T(X X Y,ERF) = &X)®, 7 (Y),
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where E R F denotes the external tensor product of vector bundles and T" denotes
smooth sections.

Remark: An alternative approach to the one we’ve taken is to use the category of
nuclear topological vector spaces, with the completed projective tensor product,
instead of the category of convenient (or differentiable) vector spaces. Using nu-
clear spaces raises a number of technical issues, but one immediate issue is the
following: although it is true that C*(X)®,C*(Y) = C®(X X Y), it seems not to
be true that the same statement holds if we use compactly supported smooth func-
tions. The problem stems from the fact that the projective tensor product does not
commute with colimits, whereas the bornological tensor product does. O

We can define symmetric powers of convenient vector spaces using the sym-
metric monoidal structure we have described. If, as before, E is a vector bundle on
X and U is an open subset of X, this proposition allows us to identify

Sym"(&.(U)) = CZ(U", E®)s,.

The symmetric algebra Sym &.(U) is defined as usual to be the direct sum of the
symmetric powers. It is an algebra in the symmetric monoidal category of conve-
nient vector spaces.

A related construction is the algebra of functions on a differentiable vector
space. If V is a differentiable vector space, we can define, as we have seen, the
space of linear functionals on V to be the space of maps Hompys(V,R). Because
the category DVS is self-enriched, this is again a differentiable vector space. In a
similar way, we can define the space of polynomial functions on V homogeneous
of degree n to be the space

P,(V) = Hompys(V, ...,V | C%)s,.
————
n times

In other words, we take smooth multilinar maps from n copies of V to R, and
then take the S, coinvariants. The self-enrichment of DVS gives this the structure
of differentiable vector space. Concretely, a smoooth map from a manifold M to
P,(V)is
C®(M, P,(V)) = Hompys(V,...,V | CZ(M))s,.
“V,—/
n times

One can then define the algebra of functions on V by

o) = ]_[ Pu(V).

(In this formula, we take the product rather than the direct sum, so that &'(V) should
be thought of as a space of formal power series on V. One can, of course, also
consider the version using the sum). The space (V) is a commutative algebra
object of the category DVS in a natural way.

This construction is a very general one, of course: one can define the algebra
of functions on any object in any multicategory in the same way.

An important example is the following.
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5.7.1 Lemma. Let E be a vector bundle on a manifold X. Then, P,(E(X)) is iso-
morphic as a differentiable vector space to the S, covariants of the space of com-
pactly supported distributional sections of E* on X".

Proor. We know that the multicategory structure on the full subcategory CVS
DVS is represented by a symmetric monoidal category, and that in this symmetric
monoidal category,

EX)%" = [(X", ™),

It follows from this that, for any manifold M, we can identify C*(M, P,(&(X)))
with the S, covariants of the space of smooth linear maps

(X", E®") — C*(M).

In fact, since the spaces in this equation are bornological (see Appendix B), such
smooth linear maps are the same as continuous linear maps.

We have seen that this space of smooth linear maps is — with its differen-
tiable structure — the same as the space D (X", (E')®) of compactly supported
distributional sections of the bundle (E*)®". O

Note that &(&(U)) is naturally the same as Hompys(Sym &(U), R), i.e., it is
the dual of the symmetric algebra of &(U).

6. The factorization envelope of a sheaf of Lie algebras

In this section, we will introduce an important class of examples of factoriza-
tion algebras. We will show how to construct, for every fine sheaf of Lie algebras
L on a manifold M, a factorization algebra that we call the factorization envelope.
This construction is our version of the chiral envelope introduced in Beilinson and
Drinfeld (2004). The construction can also be viewed as a natural generalization
of the universal enveloping algebra of a Lie algebra. Indeed, we have shown in
Section 4 that the factorization envelope of the constant sheaf of Lie algebras g on
R is the universal enveloping algebra of g, viewed as a factorization algebra on R.

The factorization envelope plays an important role in our story.

((1)) The factorization algebra of observables for a free field theory is an
example of a factorization envelope.

((i1)) In Section 4, we will show, following Beilinson and Drinfeld, that the
Kac-Moody vertex algebra arises as a (twisted) factorization envelope.

The most important appearance of factorization envelopes appears in our treatment
of Noether’s theorem at the quantum level, which is covered in Volume 2. We show
there that if a sheaf of Lie algebras £ acts on a quantum field theory on a manifold
M, then there is a morphism from a twisted factorization envelope of L to the quan-
tum observables of the field theory. This construction is very useful. For example,
for a chiral conformal field theory, it allows one to construct a map of factorization
algebras from a Virasoro factorization algebra to the quantum observables. This
map induces a map of vertex algebras via our construction in Section 2.
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6.1. The key idea. Thus, let M be a manifold. Let £ be a fine sheaf of dg
Lie algebras on M. Let L. denote the cosheaf of compactly supported sections of
L. (We restrict to fine sheaves so that taking compactly supported sections is a
straightforward operation.)

Remark: Note that, although L. is a cosheaf of cochain complexes, and a pre-
cosheaf of dg Lie algebras, it is not a cosheaf of dg Lie algebras. This is because
colimits of dg Lie algebras are not the same as colimits of cochain complexes. <

We can view L. as a prefactorization algebra valued in the category of dg Lie
algebras with symmetric monoidal structure given by direct sum. Indeed, if {U;} is
a finite collection of disjoint opens in M contained in the open V, there is a natural
map of dg Lie algebras

P £wn = Lowivy - L)

giving the factorization product.

Taking Chevalley-Eilenberg chains is a symmetric monoidal functor from dg
Lie algebras, equipped with the direct sum monoidal structure, to cochain com-
plexes.

6.1.1 Definition. If L is a sheaf of dg Lie algebras on M, the factorization envelope
UL is the prefactorization algebra obtained by applying the Chevalley-Eilenberg
chain functor to L., viewed as a prefactorization algebra valued in dg Lie algebras.

Concretely, UL assigns to an open subset V C M the cochain complex
ULV) = C(Lc(V)),

where C, is the Chevalley-Eilenberg chain complex. The factorization structure
maps are defined as follows: given a finite collection of disjoint opens {U;} in V,
we have

@ C.LUy=C. (@ L;(Ui)] = CoLe(V).

This construction is parallel to example 1.1.
We will see later (see Theorem 5.2.1) that this prefactorization algebra is a
factorization algebra.

6.2. Local Lie algebras. In practice, we will need an elaboration of this con-
struction which involves a small amount of analysis.

6.2.1 Definition. Let M be a manifold. A local dg Lie algebra on M consists of the
following data:

((1)) a graded vector bundle L on M, whose sheaf of smooth sections will
be denoted L

((i1)) a differential operator d : L — L, of cohomological degree 1 and
square 0
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((1i1)) an alternating bi-differential operator
[~ ~1: L% - L
that endows L with the structure of a sheaf of dg Lie algebras.

Remark: This definition will play an important role in our approach to interacting
classical field theories, developed in Volume 2. O

If U ¢ M, then L(U) is a topological vector space, because it is the space of
smooth sections of a graded vector bundle on U. We would like to form, as above,
the Chevalley-Eilenberg chain complex C.(L.(U)). The underlying vector space
of C.(L:(U)) is the (graded) symmetric algebra on L (U)[1]. We need to take
account of the topological structure on £L.(U) when we take the tensor powers of
L:(U).

We explained how to do this in the Section 5: we define (L.(U))®" to be the
tensor power defined using the completed projective tensor product on the topo-
logical vector space L.(U). Concretely, if L¥" denotes the vector bundle on M"
obtained as the external tensor product, then

(L(U)®" =T(U", L™

is the space of compactly supported smooth sections of L*" on U". Symmetric
(or exterior) powers of L.(U) are defined by taking coinvariants of £.(U)®" with
respect to the action of the symmetric group S ,,. The completed symmetric algebra
on L (U)[—-1] that is the underlying graded vector space of C.(L.(U)) is defined
using these completed symmetric powers. The Chevalley-Eilenberg differential is
continuous, and therefore defines a differential on the completed symmetric algebra
of L.(U)[-1], giving us the cochain complex C.(L.(U)).

Example: Let g be a Lie algebra. Consider the sheaf Q; ® g of dg Lie algebras
on R, which assigns to the open U the dg Lie algebra Q*(U) ® g. Then, as we
saw in detail in Section 4, the factorization envelope of this sheaf of Lie algebras
encodes the universal enveloping algebra Ug of g. Indeed, factorization algebras on
R with an additional “locally constant” property give rise to associative algebras,
and the associative algebra associated to U(Qy ® g) recovers the ordinary universal
enveloping algebra.

In the same way, for any Lie algebra g we can construct a factorization algebra
on R" as the factorization envelope of (07, ® g. The resulting factorization algebra
is locally constant: it has the property that the inclusion map from one disc to
another is a quasi-isomorphism. A theorem of Lurie Lurie (n.d.b) tells us that
locally constant factorization algebras on R” are the same as E, algebras. The E,
algebra we have constructed is the E,-enveloping algebra of g. (See the discussion
in Section 4 for more about locally constant factorization algebras, E, algebras,
and the E, enveloping functor.) &

6.3. Shifted central extensions and the twisted envelope. Many interesting
factorization algebras — such as the Kac-Moody factorization algebra, and the
factorization algebra associated to a free field theory — can be constructed from a
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variant of the factorization envelope construction, which we call the twisted factor-
ization envelope.

6.3.1 Definition. Let L be a sheaf of dg Lie algebras on M. A k-shifted central
extension of L. is a precosheaf of dg Lie algebras L, fitting into an exact sequence

0— Clk] > L, — Le—0

of precosheaves, where C[k] is the constant presheafthat assigns the one-dimensional
vector space C[k] in degree —k to every open.
If Lis alocal Lie algebra, we require in addition that locally there is a splitting

L(U) = Clk] ® L(U)

such that the differential and bracket maps from L.(U) — C[k] and L) —
Clk] are continuous.

6.3.2 Definition. In this situation, the twisted factorization envelope is the prefac-
torization algebra UL that sends an open set U to C.(L.(U)). (In the case that L
is a local dg Lie algebra, we use the completed tensor product as above.)

The chain complex C, (ZC(U )) is a module over chains on the Abelian Lie al-
gebra C[k] for every k. Thus, we will view the twisted factorization envelope as a
prefactorization algebra in modules for C[c] where ¢ has degree —k — 1.

Under the assumption that £ is a homotopy sheaf, Theorem 6.0.1 shows that
the twisted factorization envelope UL is a factorization algebra over the base ring
Clec]. Of particular interest is the case when k = —1, so that the central parameter ¢
is of degree 0.

Let us now introduce some important examples of this construction.

Example: Let g be a Lie algebra and consider the local Lie algebra € ® g on the
real line R, which we will denote g*. Given a skew-symmetric, invariant bilinear
form w on g, there is a natural shifted extension of g- where

[@X,60Y],=aABR[X,Y] +fa//\,8w(X,Y)c,
R
where we use ¢ to denote the generator in degree 1 of the central extension. Let
U, denote the twisted factorization envelope for this central extension. By mim-
icking the proof of Lemma 4.0.1, one can see that the cohomology of this twisted
factorization envelope recovers the enveloping algebra Ug of the central extension
of g given by w. &

Example: Let g be a simple Lie algebra, and let (-, —), denote a symmetric invari-
ant pairing on g. We define the Kac-Moody factorization algebra as follows.

Let X be a Riemann surface, and consider the local Lie algebra Q% @ gonZ,
which sends an open subset U to the dg Lie algebra Q%*(U) ® . The differential
here is d, so we are describing the Dolbeault analog of the de Rham construction
in Section 4.
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There is a —1-shifted central extension of Q?.’* ® g defined by the cocycle

w(a.p) = fU (. 0B),

where ,8 € Q¥ (U)® g and § : Q% — Q* is the holomorphic de Rham
operator. Note that this is a —1-shifted cocycle because w(a, ) is zero unless
deg(a) + deg(B) = 1.

The twisted factorization envelope U, (Q"*®g) is the Kac-Moody factorization
algebra. Locally, it recovers the Kac-Moody vertex algebra, just as the real one-
dimensional case recovers the enveloping algebra. (We show this in Section 4.) <&

Example: In this example we will define a higher-dimensional analog of the Kac-
Moody vertex algebra.

Let X be a complex manifold of dimension n. Let Q*(X) denote the de Rham
complex. Let ¢ € Q"= b=1(X) be a closed form.

Then, given any Lie algebra g equipped with an invariant pairing (-, —),, we
can construct a —1-shifted central extension Z of L = QS’* ® g, defined as above
by the cocycle

w:a®ph- f(a,6ﬁ>gA¢,
X

It is easy to verify that w is a cocycle. (The case of the Kac-Moody extension
is when n = 1 and ¢ is a constant.) The cohomology class of this cocycle is
unchanged if we change ¢ to ¢ + Ay, where ¢ € Q172X satisfies oy = 0.

The twisted factorization envelope UL = U, L is closely related to the Kac-
Moody algebra. For instance, if X = £ x P"~! where X is a Riemann surface, and
the form ¢ is a volume form on P"~!, then the push-forward of this factorization
algebra to X is quasi-isomorphic to the Kac-Moody factorization algebra described
above. (Let p : X — X denote the projection map. The push-forward is defined by

(pF)U) = F(p~'(U))

foreach U Cc X.)

There is an important special case of this construction. Let X be a complex
surface (i.e., dimc(X) = 2) and the form ¢ is the curvature of a connection on the
canonical bundle of X (i.e., ¢ represents c1(X)). As we will show when we discuss
Noether’s theorem at the quantum level, if we have a field theory with an action of
a local dg Lie algebra £ then a twisted factorization envelopes of £ will map to
the factorization algebra of observables of the theory. One can show that the local
dg Lie algebra Q?(’* ® g acts on a twisted N = 1 gauge theory with matter, and that
the twisted factorization envelope — with central extension determined by c;(X)
— maps to observables of this theory (following Johansen (1995)). &

7. Equivariant prefactorization algebras

Let M be a topological space with an action of a group G by homeomorphisms.
For g € G and U ¢ M, we use gU to denote the subset {gx | x € U} ¢ M. We
will formulate what it means to have a G-equivariant prefactorization algebra on



66 3. PREFACTORIZATION ALGEBRAS AND BASIC EXAMPLES

M. When M is a manifold and G is a Lie group acting smoothly on M, we will
formulate the notion of a smoothly G-equivariant prefactorization algebra on M.

7.1. Discrete equivariance. We begin with the case where G is viewed sim-
ply as a group (i.e., we do not require any compatibility between the action and a
possible smooth structure on G). We give a concrete definition.

7.1.1 Definition. Let F be a prefactorization algebra on M. We say F is G-
equivariant if for each g € G and each open subset U C M we are given iso-
morphisms

oyt F(U) = F(gU)
satisfying the following conditions.

(1)) Forall g,h € G and all opens U, 040 o), = g, - F(U) — F(ghU).
(1)) Every o respects the factorization product. That is, for any finite tuple
Ui, ..., Uy of disjoint opens contained in an open V, the diagram

FUN®--@F (Up) —=F QU @F(gUy)

l |

F (V) F(gV)

commutes.

There is a more categorical way to phrase this definition. As G acts contin-
uously, each element g € G provides an endofunctor of the category Opens,, of
opens in M. Indeed, g provides an endofunctor of Disj,, and hence, via precom-
position, provides an endofunctor on the category of algebras over Disj,,: it sends
a prefactorization algebra A to a prefactorization algebra gA, where gA(U) =
A(gU). An equivariant prefactorization algebra is then a collection of isomor-
phisms o : A — gA of prefactorization algebras such that (ho ) o 07 = Tgj,.

7.2. A useful reinterpretation. We want to be able to talk about a prefactor-
ization algebra 7 that is equivariant with respect to the smooth action on a manifold
M of a Lie group G. In particular, we need to formulate what it means to give a
“smooth” action of G on a prefactorization algebra.

As a first step, we will rework the notion of equivariant prefactorization alge-
bra. We will start by constructing a colored operad for each group G. An algebra
over this colored operad will recover the preceding definition of a G-equivariant
prefactorization algebra.

7.2.1 Definition. Let Disjf,l denote the colored operad where the set of colors is

the set of opens in M and where the operations Disj?,I(Ul ..., Un |'V) are given by
the set

{(81.....8n) € G" | Vi, giU; € V and Vi # j. giU; N g;U; = 0

for any choice of inputs Uy, ..., U, and output V.
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There is a map of colored operads Disj,, — Disjf,,, sending each open to itself
and sending a nonempty operation Uy,..., U, — V to the identity in G". Hence,
given an algebra A over Disjg[, there is an “underlying” prefactorization algebra
on M.

Next, observe that for an open set U, the set Disjfl(U | gU) is the coset g -
Stab(U), where the stabilizer subgroup Stab(U) C G consists of elements in G
that preserve U. Hence for any algebra A over Disjg[, we see that there is an

isomorphism o, : AV) — A(gU) for every g € G and that they compose in the
natural way. Hence the “underlying” prefactorization algebra is G-equivariant.

Now observe that every operation in Disj% factors as a collection of unary
operations o, arising from the G-action followed by a operation from the “under-
lying” prefactorization algebra. (If the input opens U; already sit in the output open
V., we are done. Otherwise, pick elements g; of G that move the input opens inside
V and keep them pairwise disjoint.) Hence we obtain the following lemma.

7.2.2 Lemma. For G a group, every G-equivariant prefactorization algebra on M
produces a unique algebra over Disjf,,, and conversely.

Some notation will make it easier to understand how the G-action intertwines
with the structure of the prefactorization algebra A. If (g1,...,8,) € Disjg[(U L., Un |V),
then we denote the associated operation by

Mg,,..q0) - AU @ @ AUy) = A(V).

It can understood as the composition
®0y;
Q) AWU) — (X) A@iU) - AW),
i i

where the second map is the structure map of the prefactorization algebra and the
first map is given by the unary operations arising from the action of G on M.

7.3. Smooth equivariance. From now on, we focus upon the situation where
G is a Lie group acting smoothly on a smooth manifold M. In this situation, an
algebra A over Disjz has an underlying prefactorization algebra on M but now we
want the operations to vary smoothly as the input opens are moved by elements of
G. To accomplish this, we need to equip with sets of operations with a “smooth
structure” and we need the target category, in which an algebra takes values, to
admit a notion of “smoothly varying family of multilinear maps.”

Throughout this book, our prefactorization algebras take values in the category
DVS of differentiable vector spaces or in the category Ch(DVS) of cochain com-
plexes of differentiable vector spaces. We view these categories as enriched over
themselves. In the case of DVS, the self-enrichement is discussed in Section 5.6.
If V, W are differentiable vector spaces, we denote by Hompys(V, W) the differen-
tiable vector space of maps from V to W. The key feature of Hompys(V, W) is that
its value on a point is DVS(V, W) and, more generally, its value on a manifold X is
smooth families over X of maps of differentiable vector spaces from V to W. The
self-enrichment of DVS leads, in an obvious way, to a self-enrichment of Ch(DVS).
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7.3.1. The colored operad. Equipping each set of operations Disj%(U Loy Un |V)
with some kind of smooth structure is a little subtle. We might hope such a set,
which is a subset of G”, inherits a manifold structure from G”, but it is easy to pro-
duce examples of opens U; and V where the set of operations is far from being a
submanifold of G". We take the following approach instead. Given a subset S € X
of a smooth manifold, there is a set of smooth maps ¥ — X that factor through S
for any smooth manifold Y. In other words, S provides a sheaf of sets on the site
Mfld of smooth manifolds, sometimes known as a “generalized manifold.” (See
Definition 2.0.1 for the site.)

Let Shv(Mfld) denote the category of sheaves (of sets). Then every collection
of operations

Disj$,(U1,..., U, | V)

provides such a sheaf, so we naturally obtain a colored operad enriched in “gener-
alized manifolds,” i.e., Shv(Mfld).

— G
7.3.1 Definition. Let Disj,, denote the colored operad where the set of colors is the

— G
set of opens in M and where the operations Disj, (Uy, ..., U, | V) are the sheaves
on MAfld determined by the subset

Disj,(U1,...,U, | V) C G".

— G
Let us unpack what this definition means. An algebra # over Disj,, in DVS
associates to each open U C M, a differentiable vector space ¥ (U). To each finite
collection of opens Uy, ..., U,, V, we have a map of sheaves

—.G
Disjy(Uy, ..., Uy | V) = Hompys(F (Uy), ..., F (Up) | F(V)).

Thus, for each smooth manifold Y and for each smooth map ¥ — G" factoring
through Disjf,,( Ui,...,U, | V), we obtain a section in

C*= (Y, Hompys(F (U1), ..., F(Up) | F(V)),

which encodes a Y-family of multilinear morphisms from the ¥ (U;) to F (V).

— G
Note that we can evaluate each sheaf Disj,,(Uj,..., U, | V) at the point * €
Mfld to obtain the underlying set Disjf,I(U 15---s Uy | V). Thus, each algebra over

]5?3355,, has an underlying G-equivariant prefactorization algebra.

An algebra over this new colored operad is very close to what we need for our
purposes in this book. What’s missing so far is the ability to differentiate the action
of G on the prefactorization algebra to obtain an action of the Lie algebra g.

Ideally, this action of g would simply exist. Instead, we will put it in by hand,
as data, since that suffices for our purposes. After giving our definition, however,
we will indicate a condition on an algebra over Disjf,[ that provides the desired
action automatically.

7.3.2. Derivations. First, we need to introduce the notion of a derivation of a
prefactorization algebra on a manifold M. We will construct a differential graded
Lie algebra of derivations of any prefactorization algebra.
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Recall that a derivation of an associative algebra A is a linearmap D : A — A
that intertwines in an interesting way with the multiplication map:

D(m(a, b)) = m(Da, b) + m(a, Db),

a relation known as the Leibniz rule. We simply write down the analog for an
algebra over the colored operad Disj,, taking values in cochain complexes.

7.3.2 Definition. A degree k derivation of a prefactorization algebra F is a collec-
tion of maps Dy : ¥ (U) — F(U) of cohomological degree k for each open subset
U C M, with the property that for any finite collection of pairwise disjoint opens
Ui, ..., Uy, all contained in an open V, and an element «; € 5 (U;) for each open,
the derivation acts by a Leibniz rule on the structure maps:

where the sign is determined by the usual Koszul rule of signs.

Let Der’(¥) denote the derivations of degree k. It is easy to verify that the
derivations of all degrees Der*(#) forms a differential graded Lie algebra. The
differential is defined by (dD)y = [dy, Dy], where dy is the differential on 7 (U).
The Lie bracket is defined by [D, D']y = [Dy, Dy].

The concept of derivation allows us to talk about the action of a dg Lie algebra
g on a prefactorization algebra . Such an action is simply a homomorphism of
differential graded Lie algebras from g to Der*(F).

7.3.3. The main definition. We now provide the main definition. As our pref-
actorization algebra 7 takes values in the category of differentiable cochain com-
plexes, it makes sense to differentiate an element of ¥ (U) for any open U.

7.3.3 Definition. A smoothly G-equivariant prefactorization algebra on M is an

— G
algebra F over Disj,, and an action of the Lie algebra g of G on the under-
lying prefactorization algebra of ¥ such that for every X € g, every operation

— G
(g1,...,8n) €Disjy(Uy,...,U, | V), and every 1 <i < n, we have
_mg1 ..... g,,(a]’ o $a,n) = mg] ..... g,,(al’ . ..,X(CZ,‘),. . "al’l)'

On the left hand side, % indicates the action of the left-invariant vector field on
G* associated to X in the ith factor of G* and zero in the remaining factors.

Remark: In some cases, an algebra A over ligjfl should possess a natural action of
g. We want to recover how g acts on each value A(U) from the action of G on A.
Suppose V is an open such that gU c V for every g in some neighborhood of the
identity in G. Then we can differentiate the structure maps mg, : A(U) — A(V) to
obtain a map X : A(U) — A(V) for every X € g. If A(U) = lim,,_;; A(V), we ob-
tain via this limit, an action of g on A(U). Hence, if we have A(U) = lim,_z A(V)
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for every open U, we obtain an action of g on the underlying prefactorization alge-
bra of A. (The compatibility of the G-action with the structure ensures that we get
derivations of A.) &

Here is an example we will revisit.

Example: Let ¥ be a locally constant, smoothly translation invariant factorization
algebra on R, valued in vector spaces. Hence, A = 7 ((0, 1)) has the structure of an
associative algebra.

Being locally constant means that for any two intervals (0, 1) and (z,¢ + 1),
there is an isomorphism ¥ ((0,1)) = ¥ ((t,¢ + 1)) coming from the isomorphism
F((a,b)) —» F(R) associated to inclusion of an interval into R. As ¥ is trans-
lation invariant, there is another isomorphism 7 ((0,1)) — F((t,t + 1)) for any
t € R. Composing these two isomorphism yields an action of the group R on
A = F((0, 1)). One can check that this is an action on associative algebras, not just
vector spaces.

The fact that ¥ is both smoothly translation-invariant and locally constant
means that the action of R on A is smooth, and thus it differentiates to an infin-
itesimal action of the Lie algebra R on A by derivations. The basis element % of R
becomes a derivation H of A, called the Hamiltonian.

In the case that ¥ is the cohomology of the factorization algebra of observables
of the free scalar field theory on R with mass m, we will see in Section 3 that
the algebra A is the Weyl algebra, generated by p, g, i with commutation relation
[p, q] = ii. The Hamiltonian is given by H(a) = zl—h[p2 - m?q?, al. &
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CHAPTER 4

Free field theories

1. The divergence complex of a measure

In this section, we will revisit the ideas and constructions from Chapter 2. Re-
call that in that chapter, we studied the divergence operator associated to a Gaussian
measure on a finite-dimensional vector space and then generalized this construc-
tion to the infinite-dimensional vector spaces that occur in field theory. We used
these ideas to define a vector space H°(Obs?) of quantum observables.

Our goal here is to lift these ideas to the level of cochain complexes. We will
find a cochain complex Obs? such that H(Obs?) is the vector space we constructed
in Chapter 2. To make the narrative as clear as possible, we will recapitulate our
approach there.

1.1. The divergence complex of a finite-dimensional measure and its clas-
sical limit. We start by considering again Gaussian integrals in finite dimensions.
Let M be a smooth manifold of dimension n, and let wy be a smooth measure
on M. Let f be a function on M. (For example, M could be a vector space, wg
the Lebesgue measure and f a quadratic form.) The divergence operator for the
measure e//"wq is a map

Divy, : Vect(M) — C*(M)
X = hY(Xf) + Div,, X.

One way to describe the divergence operator is to contract with the volume form
e/Mwy to identify Vect(M) with Q"~'(M) and C®(M) with Q"(M). Explicitly,
the contraction of a function ¢ with efMwy is the volume form ¢>ef Mg, and the
contraction of a vector field X with ¢//"wy is the n — 1-form txe//"w,y. Under
this identification, the divergence operator is simply the de Rham operator from
Q" H(M) to Q(M).

The de Rham operator, of course, is part of the de Rham complex. In a similar
way, we can define the divergence complex, as follows. Let

PVI(M) = C®(M, N'TM)

denote the space of polyvector fields on M. The divergence complex is the complex

Divy, Divy,

.-+ — PVI(M) — PV (M) — PVO(M)

where the differential
Divy, : PVi(M) - PVI™L(M)

73
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is defined so that the diagram

PVi(M) —% elon - i(M)

l Divy, L dar

Pvl I(M) ve! Qn t+l(M)

commutes. Here we use Ve//"wy to denote the contraction map; it is the natural ex-
tension to polyvector fields of the contractions we defined for functions and vector
fields.

In summary, after contracting with the volume e//"wy, the divergence complex
becomes the de Rham complex. It is easy to check that, as maps from PV(M) to
PVi~1(M), we have

Div, = Vi~ldf + Divy,

where Vdf is the operator of contracting with the 1-form df. In the # — 0 limit,
the dominant term is VZ~'df.

More precisely, by multiplying the differential by 7, we see that there is a flat
family of cochain complexes over the algebra C[#] with the properties that

((1)) the family is isomorphic to the divergence complex when 7 # 0, and
((ii)) at 7 = 0, the cochain complex is

N PVZ(M) /, pv! ) =L PVO(M)

Note that this second cochain complex is a differential graded algebra, which is not
the case for the divergence complex.

The image of the map vdf : PV!(M) —» PV(M) is the ideal cutting out the
critical locus. Indeed, this whole complex is the Koszul complex for the equations
cutting out the critical locus. This observation leads to the following definition.

1.1.1 Definition. The derived critical locus of f is the locally dg ringed space
whose underlying manifold is M and whose dg commutative algebra of functions
is the complex PV*(M) with differential Vdf.

Remark: We will call a manifold with a nice sheaf of dg commutative algebras a dg
manifold. Since the purpose of this section is motivational, we will not develop a
theory of such dg manifolds. We are using the concrete object here as a way to think
about the derived geometry of this situation. (More details on derived geometry,
from a different point of view, will be discussed in Volume 2.) The crucial point is
that the dg algebra keeps track of the behavior of d f, including higher homological
data. &

Here is a bit more motivation for our terminology. Let I'(df) c T*M denote
the graph of df. The ordinary critical locus of f is the intersection of I'(df) with
the zero-section M C T*M. The derived critical locus is defined to be the derived
intersection. In derived geometry, functions on derived intersections are defined by
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derived tensor products:
C¥(Crit(f)) = CO(T(Af)) ®ceore gy CT(M).

By using a Koszul resolution of C*(M) as a module for C*(T*M), one finds a
quasi-isomorphism of dg commutative algebras between this derived intersection
and the complex PV*(M) with differential vdf.

In short, we find that the # — 0 limit of the divergence complex is the dg
commutative algebra of functions on the derived critical locus of f.

An important special case of this relationship is when the function f is zero. In
that case, the derived critical locus of f has as functions the algebra PV*(M) with
zero differential. We view this algebra as the functions on the graded manifold
T*[-1]M. The derived critical locus for a general function f can be viewed as a
deformation of 7*[—1]M obtained by introducing a differential vdf.

1.2. A different construction. We will define the prefactorization algebra of
observables of a free scalar field theory as a divergence complex, just like we de-
fined HY of observables to be given by functions modulo divergences in Chapter
2. It turns out that there is a slick way to write this prefactorization algebra as a
twisted factorization envelope of a certain sheaf of Heisenberg Lie algebras. We
will explain this point in a finite-dimensional toy model, and then we will use the
factorization envelope picture to define the prefactorization algebra of observables
of the field theory in the next section.

Let V be a vector space, and let g : V — R be a quadratic function on V. Let wy
be the Lebesgue measure on V. We want to understand the divergence complex for
the measure e?/"wy. The construction is quite general: we do not need to assume
that ¢ is non-degenerate.

The derived critical locus of the function ¢ is a linear dg manifold. (The Ja-
cobi ideal is generated by linear equations.) Linear dg manifolds are equivalent to
cochain complexes: any cochain complex B gives rise to the linear dg manifold
whose functions are the symmetric algebra on the dual of B.

The derived critical locus of ¢ is described by the cochain complex W given by

/0.
v 24, v,

where the differential sends v € V to the linear functional %v =q(v,—).

Note that W is equipped with a graded anti-symmetric pairing (—, —) of co-
homological degree —1, defined by pairing V and V*. In other words, W has a
symplectic pairing of cohomological degree —1. We let

Hy =C-H[-1]® W,

where C - 7 indicates a one-dimensional vector space with basis 7. We give the
cochain complex Hyy a Lie bracket by saying that

w,w'] = {w,w').

Thus, Hy is a shifted-symplectic version of the Heisenberg Lie algebra of an ordi-
nary symplectic vector space.
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Consider the Chevalley-Filenberg chain complex C.Hy. This cochain com-
plex is defined to be the symmetric algebra of the underlying graded vector space
Hw([1] = W[1] & C - i but equipped with a differential determined by the Lie
bracket. Since the pairing on W identifies W[1] = W*, we can identify

C.(Hw) = (Sym (W") [R], dcE)

where dcg denotes the differential. Since, as a graded vector space, W = V &
V*[—1], we have a natural identification

Co(Hw) = PV'(V)[1]
where PV*(V) refers to polyvector fields on V with polynomial coefficients and

where, as before, we place PV"*(V) in degree —n.

1.2.1 Lemma. The differential on C.(Hw) is, under this identification, the opera-
tor

7 Div - PVI(W)[K] — PVL(W)[A],
where wy is the Lebesgue measure on 'V, and q is the quadratic function on V used
to define the differential on the complex W.

ed/h gy

Proor. The proof is an explicit calculation, which we leave to the interested
reader. The calculation is facilitated by choosing a basis of V in which we can
explicitly write both the divergence operator and the differential on the Chevalley-
Eilenberg complex C.(Hyw). O

In what follows, we will define the prefactorization algebra of observables of
a free field theory as a Chevalley-Eilenberg chain complex of a certain Heisenberg
Lie algebra, constructed as in this lemma.

2. The prefactorization algebra of a free field theory

In this section, we will construct the prefactorization algebra associated to any
free field theory. We will concentrate, however, on the free scalar field theory on
a Riemannian manifold. We will show that, for one-dimensional manifolds, this
prefactorization algebra recovers the familiar Weyl algebra, the algebra of observ-
ables for quantum mechanics. In general, we will show how to construct correla-
tion functions of observables of a free field theory and check that these agree with
how physicists define correlation functions.

2.1. The classical observables of the free scalar field. We start with a stan-
dard example: the free scalar field. Let M be a Riemannian manifold with metric
g, so M is equipped with a natural density. We will use this natural density both
to integrate functions and also to provide an isomorphism between functions and
densities, and we will use this isomorphism implicitly from hereon.

The scalar field theory has smooth functions as fields, and we use the notation
¢ € C™(M) for an arbitrary field. The action functional of the theory is

S(¢) = f 2
M
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where A is the Laplacian on M. (Normally we will reserve the symbol A for the
Batalin-Vilkovisky Laplacian, but that’s not necessary in this section.) This func-
tional is not well-defined on a field ¢ unless ¢A¢ is integrable, but it is helpful to
bear in mind that for classical field theory, what is crucial is the Euler-Lagrange
equations, which in this case is A¢ = 0 and which is thus well-defined on all
smooth functions. The action can be viewed here as a device for producing these
partial differential equations.

If U ¢ M is an open subset, then the space of solutions to the equation of
motion on U is the space of harmonic functions on U. In this book, we will always
consider the derived space of solutions of the equation of motion. (For more details
about the derived philosophy, the reader should consult Volume 2.) In this simple
situation, the derived space of solutions to the free field equations, on an open
subset U C M, is the two-term complex

£W) = (W) 5 c>w-),

where the complex is concentrated in cohomological degrees 0 and 1. (The bracket
[—-1] denotes “shift up by 1.”)

The observables of this classical field theory are simply the functions on this
derived space of solutions to the equations of motion. As this derived space is a
cochain complex (and hence linear in nature), it is natural to work with the polyno-
mial functions. (One could work with more complicated types of functions, but the
polynomial functions provide a concrete and useful collection of observables.) To
be explicit, the classical observables are the symmetric algebra on the dual space
to the fields.

Let’s make this idea precise, using the technology we introduced in Section 5.
The space & (M) has the structure of differentiable cochain complex (essentially, it
is a sheaf of vector spaces on the site of smooth manifolds). We define the space
of polynomial functions homogeneous of degree n on &(M) to be the space

Py(&(M)) = Hompys(&(M) X - -- X &(M),R)s,,.

In other words, we consider smooth multilinear maps from n copies of &(M), and
then we take the S ,-coinvariants. The algebra of all polynomial functions on &(M)
is the space P(&(M)) = &, P,(&(M)).

As we discussed in Section 5, we can identify

Pu(EM)) = D(M", (ENV™)s,

as the S ,-coinvariants of the space of compactly supported distributional sections
of the bundle (E")® on M". In general, if &£(M) is sections of a graded bundle E,
then E' is EV ® Dens. In the case at hand, the bundle E' is two copies of the trivial
bundle, one in degree —1 and one in degree O.

For example, the space P1(&(M)) = &(M)" of smooth linear functionals on
& (M) is the space

EM = (DM 5 D))

where D (M) indicates the space of compactly supported distributions on M.
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We also want to keep track of where measurements are taking place on the
manifold M, so we will organize the observables by where they are supported. The
classical observables with support in U C M are then the symmetric algebra of

£W) = (D S DV,

where D, (U) indicates the space of compactly supported distributions on U. The
complex &(U)" is thus the graded, smooth linear dual to the two-term complex
&(U) above. Note that, as the graded dual to &, this complex is concentrated in
cohomological degrees 0 and —1. These are precisely the observables that only
depend on the behavior of the field ¢ on the open set U.

Thus, as a first pass, one would want to define the classical observables as the
symmetric algebra on &(U)Y. This choice leads, however, to difficulties defining
the quantum observables. When we work with an interacting theory, these diffi-
culties can only be surmounted using the techniques of renormalization. For a free
field theory, though, there is a much simpler solution, as we now explain.

Recall from Section 5 that E' denotes the vector bundle EV ® Densy;. Our
identification between densities and functions then produces an isomorphism

ENU) = (CXU)[1] - C2W)),

for compactly supported sections of &". Note that there is a natural map of cochain
complexes & (U) — &(U)", given by viewing a compactly supported function as
a distribution.

2.1.1 Lemma. The inclusion map &'(U) — &U)Y is a cochain homotopy equiv-
alence of differentiable cochain complexes.

Proor. This assertion is a special case of a general result proved in Appen-
dix D. Note that by differentiable homotopy equivalence we mean that there is an
“inverse” map &(U)" — &(U), and differentiable cochain homotopies between
the two composed maps and the identity maps. “Differentiable” here means that
all maps are in the category DVS of differentiable vector spaces. As these are
convenient cochain complexes, suffices to construct a continuous homotopy equiv-
alence. |

This lemma says that, since we are working homotopically, we can replace
a distributional linear observable by a smooth linear observable. In other words,
any distributional observable that is closed in the cochain complex & (U)" is chain
homotopy equivalent to a closed smooth observable.We think of the smooth linear
observables as “smeared.” For example, we can replace a delta function d, by some
bump function supported near the point x.

The observables we will work with is the space of “smeared observables”,
defined by

Obs(U) = Sym(&.(U)) = Sym(CZ(U)[1] = CE(U)),
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the symmetric algebra on &'(U). As we explained in Section 5, this symmetric
algebra is defined using the natural symmetric monoidal structure on the full sub-
category CVS c DVS of convenient vector spaces. Concretely, we can identify

Sym"(&X(U)) = CX (U™, (EH*)s,.

In other words, Sym”é"c’(U) is the subspace of P,(&(U)) defined by taking all
distributions to be smooth functions with compact support.

2.1.2Lemma. The map Obs(U) — P(&(U)) is a homotopy equivalence of cochain
complexes of differentiable vector spaces.

Proor. It suffices to show that the map Sym” é"C!(U ) = P,(&(U)) is a differen-
tiable homotopy equivalence for each n. But for this, it suffices to observe that the
map

CEWU, (EY®") = De(U, (EH®")

is an S ,-equivariant differentiable homotopy equivalence. O

In parallel to the previous lemma, this lemma says that, since we are working
homotopically, we can replace a distributional polynomial observable (given by
integration against some distribution on U") by a smooth polynomial observable
(given by integration against a smooth function on U").

2.2. Interpreting this construction. Let us describe the cochain complex
Obs“/(U) more explicitly, in order to clarify the relationship with what we dis-
cussed in Chapter 2. The complex Obsd(U ) looks like

Lo o A2CP(U) ® Sym CX(U) — CX(U) ® Sym CZ(U) — Sym CX(U).

All tensor products appearing in this expression are completed tensor products in
the category of convenient vector spaces.

We should interpret Sym C7°(U) as being an algebra of polynomial functions
on C*(U), using (as we explained above) the Riemannian volume form on U to
identify C7°(U) with a subspace of the dual of C*°(U). There is a similar interpre-
tation of the other terms in this complex using the geometry of the space C*(U) of
fields. Let T.C*(U) refer to the subbundle of the tangent bundle of C*(U) given
by the subspace C°(U) € C*(U). An element of a fibre of T7.C*(U) is a first-order
variation of a field which is zero outside of a compact set. This subspace T,.C*(U)
defines an integrable foliation on C*°(U), and this foliation can be defined if we
replace C*(U) by any sheaf of spaces.

Then, we can interpret C.°(U) ® Sym C°(U) as a space of polynomial sections
of T.C*(U). Similarly, /\kC;’o(U) ® Sym C°(U) should be interpreted as a space
of polynomial sections of the bundle A*T.C*(U).

That is, if PV (C*(U)) refers to polynomial polyvector fields on C*(U) along
the foliation given by 7.C*(U), we have

Obs“/(U) = PV (C®(U)).

So far, this is just an identification of graded vector spaces. We need to explain
how to identify the differential. Roughly speaking, the differential on Obs(U)
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corresponds to the differential on PV .(C*(U)) obtain this complex is given by
contracting with the one-form dS for the function

S@) =3 f PP,

the action functional. Before making this idea precise, we recall the finite-dimensional
model of a quadratic function Q(x) = (x,Ax) on a vector space V. The contrac-
tion of the 1-form dQ with a tangent vector vy € TyV gives the linear functional

x = (vg,Ax). As § is quadratic in ¢, we expect that the contraction of dS with a
tangent vector ¢oinC>(U) is the linear functional

¢ %f«zﬁom.

But we run into an issue here: the functional S is not well-defined for all fields ¢,
because the integral may not converge, and similarly the linear functional above is
not well-defined for arbitrary smooth functions ¢¢ and ¢. However, the expression

MY
@ = 4 f e

does make sense for any ¢ € C*(U) and ¢9 € C°(U). (Note that we now only
consider tangent vectors ¢o with compact support.) In other words, the desired
one-form dS does not make sense as a section of the cotangent bundle of C*(U),
but it is well-defined as a section of the space T:C*(U), the dual of the subbun-
dle T.C*(U) c TC*(U) describing vector fields along the leaves. This leafwise
one-form is closed. Such one-forms are the kinds of things we can contract with
elements of PV.(C*(U)). The differential on PV .(C*(U)) thus matches the differ-
ential on Obs“ given by contracting with dS .

2.3. General free field theories. With this example in mind, we introduce a
general definition.

2.3.1 Definition. Let M be a manifold. A free field theory on M is the following
data:

((1)) A graded vector bundle E on M, whose sheaf of sections will be de-
noted &, and whose compactly supported sections will be denoted &...
((i1)) A differential operator d : & — &, of cohomological degree 1 and
square zero, making & into an ellipt