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The What

Electrical forms of matter:

1700s conductors & insulators
1900s superconductors (& semimetals & semiconductors)
Since 2005 topological insulators . . . & topological superconductors

& semimetals . . . more?
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https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/Insulator_(electricity)
https://en.wikipedia.org/wiki/Superconductivity
https://en.wikipedia.org/wiki/Semimetal
https://en.wikipedia.org/wiki/Semiconductor
http://www.scholarpedia.org/article/Topological_insulators


The What

Tentative Definition

A topological insulator is a material that is insulating in the bulk but
conducts on its surface.

More accurately, there are two key defining features:

the physics of the material is time-reversal invariant, and

these surface states are “topologically protected” (i.e., small
modifications of the system do not destroy the surface conduction.

Mathematically attractive aspects:

The surface is a defect between regions governed by
different physics

The Bloch electrons propagating on the surface satisfy a
massless Dirac equation!
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The How

This subject supports two different approaches, just like condensed
matter theory does generally. We will learn about both approaches as
developed in physics and math.

Physics Our Topic Math Text

single-body band theory twisted equivariant Freed & Moore
K-theory

many-body TFTs as invertible fully- Freed, Kapustin
effective actions extended TFTs

There are lots of open questions here, on the math side too!
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http://front.math.ucdavis.edu/1208.5055
http://front.math.ucdavis.edu/1406.7278
http://front.math.ucdavis.edu/1504.01830


The Why

It’s just amazing to use topology to predict new kinds of materials!

Topological insulators and superconductors should lead to new
technology, via spintronics, thermoelectrics, etc.

The (potential) big application: these materials suggest how to
realize Majorana fermions and an approach to topological quantum
computing.
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The When & Where

You will not be expected to know almost any physics. Just some math
that is commonplace around here.
Our seminar will split up into two independent halves.

Topological Band Theory: Intro - Owen
Physics - Alessandro
TEM, I - ?
TEM, II - ?

TEM = “Twisted Equivariant Matter” by Freed & Moore

Topological Field Theory: Physics, I - Pavel, O, or A
Physics, II - ?
SRE, I - ?
SRE, II - ?

SRE = “Short-range entanglement . . . ” by Freed

Perhaps a paper by Kapustin and company
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http://front.math.ucdavis.edu/1208.5055
http://front.math.ucdavis.edu/1406.7278


Broad goals

Main goal

Explore life at the boundary of math and physics

Learn enough of the basic context to look at survey articles by
physicists (see website)

See how first-rate mathematicians recognize & extract compelling
problems from such a context (Freed, Moore, Kapustin will be our
models here)

Point out interesting lines of research

This is the blind leading the blind. So let’s enjoy the journey!
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What is . . .

Definition

Solid-state physics aims to understand the behavior of solids, such as
response to heat or electromagnetic fields. Theorists aim to explain this
behavior via quantum mechanics & quantum field theory.

Bear in mind:
Every theoretical description of a physical situation is (at best!) an
approximation. It is justified if it works pretty well, at something. (See,
e.g., the Drude and Sommerfeld models.)
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https://en.wikipedia.org/wiki/Solid-state_physics


The challenge

Let’s size up the problem:

radius of an atom ≈ 1 Å (= 10−10m)

number of atoms per cm3 ≈ 1022

That is a lot of electrons, protons, and neutrons! There’s no way one
can simply solve the Schrödinger equation for such a system.
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The strategy

The nuclei are much heavier than the electrons:

mp

me
≈ 1836.

So to simplify:

1 We will pretend the nuclei are static, and hence not treat them via
quantum mechanics.

2 We will also only consider solids in which the nuclei are arranged
in a crystal: their positions are invariant under the action of a full
lattice Λ ⊂ R3.

3 Only electrons will be treated quantum mechanically.
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The strategy

For one electron, the Hilbert space is

H1 = L2(R3)⊗ C2.

For N electrons, the Hilbert space is

HN = ΛN (L2(R3)⊗ C2) ⊂
N⊗
L2(R3)⊗ C2,

thanks to the Pauli exclusion principle (i.e., the spin-statistics
connection).
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https://en.wikipedia.org/wiki/Pauli_exclusion_principle


The strategy

The Schrödinger equation is

i~
∂Ψ

∂t
= HNΨ.

Here the Hamiltonian has the form

HN =

N∑
i=1

− ~2

2me
∇2

(i)︸ ︷︷ ︸
“kinetic energy”

+
∑
`∈Λ

Ze2

|x(i) − `|︸ ︷︷ ︸
electron-nuclei

+
1

2

∑
i 6=j

e2

x(i) − x(j)︸ ︷︷ ︸
electron-electron

+ · · ·

where Z is the atomic number of the nucleus. The dots indicate other
terms like spin-orbit coupling or external electromagnetic fields. (These
will briefly appear in Alessandro’s talk.)

Owen Gwilliam Welcome to the Solid State

https://en.wikipedia.org/wiki/Spin%E2%80%93orbit_interaction


The strategy

Crazy but good idea:

Treat electrons as independent but each experiences the same potential
function V , which is invariant under Λ.

The function V replaces the electron-electron term with an “average
electron charge distribution.” There are very effective choices known
for some materials.
Now H =

∑
iH(i), where each H(i) is identical. Hence we can find

eigenstates separately for each electron i, and then take into account
the Pauli exclusion principle. (This is a much easier problem.)
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The strategy

Result

It works really well for many solids!

See any book on solid state physics, like Ashcroft-Mermin or Alloul.

Justification:

Landau’s “Fermi liquid theory” gives insight into why this approach
often works. To be honest, we’re working with essentially independent
quasi-particles, rather than bare electrons. (There is a modern
explanation via Wilsonian arguments.)
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http://link.springer.com/book/10.1007/978-3-642-13565-1
http://arxiv.org/abs/hep-th/9210046
http://arxiv.org/abs/hep-th/9210046


Band theory

We now have our work cut out for us: solve the Schrödinger equation
with a Λ-periodic potential.

Bloch’s Theorem

The eigenstates of such a Hamiltonian can be chosen to have the form

ψn,k(x) = eik·xun,k(x),

where un,k is invariant under Λ. Equivalently, the eigenstates can be
chosen such that each eigenstate ψ has a wavevector k such that

ψ(x + `) = eik·`ψ(x)

for every ` ∈ Λ.

In short, an eigenstate is a plane-wave times a Λ-periodic function. We
call k the crystal momentum of the state.
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Band theory

The proof is simple. Translation by ` ∈ Λ commutes with H, so we
can pick eigenstates for both Λ and H simultaneously.

The values of crystal momentum k live in a fundamental domain of
the dual lattice Λ∨. (In physics the Voronoi cell is called a
Brillouin zone.)

It is even better to view our problem as parametrized by the
Brillouin torus, TΛ = Rn/Λ∨.

For each value k ∈ TΛ, there is its Bloch Hamiltonian H(k) given
by solving for the un,k. The spectrum is discrete because we are
solving on the torus Rn/Λ, since the u terms are periodic.

(I hope you see the possibility for K-theoretic thinking there:
understanding eigenvalues of endomorphisms of vector bundles . . . )
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https://en.wikipedia.org/wiki/Brillouin_zone


Band Theory - 1D pictures

We can plot the spectrum over the fundamental domain.

free (weak) potential

On the left we have E(k) = k2 for the free particle. On the right, a
weak periodic potential affects the values at the boundary.
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Band Theory - 1D pictures

Projecting out the momentum direction, we see gaps emerge.

This behavior is “generic” for periodic potentials. (Thanks to
mysterious blogger for these pictures.)
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http://skepticsplay.blogspot.de/2011/06/what-is-electronic-band-structure.html


Band Theory - 2D pictures

These functions are also called dispersion relations. In two dimensions,
they can be come quite beautiful.

This picture is the band structure graphene, an amazing new material.
Notice the six points where the levels touch.
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https://en.wikipedia.org/wiki/Dispersion_relation
http://www.newyorker.com/magazine/2014/12/22/material-question


Band Theory - 3D pictures

Here is a common type of diagram.

On the left is the Brillouin zone, with special points labelled. On the
right are spectra along straight line paths between special points.
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Band Theory - Power of numerics

Physicists have developed powerful computational tools for estimating
such band structures from atomic spectra and crystal structure.

The continuous curves are estimates for copper. The dots are
experimental measurements. (Thanks to Alloul for these pictures.)
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Band Theory - Side remark

I’ve suppressed an important issue so far, and I won’t say much now.
We want the thermodynamic limit, where we work with a sequence of
finite-volume regions of space {Vi} and finitely many particles {Ni} and
take the limit as i→∞, with vol(Vi)→∞, Ni →∞, but Ni/Vi → ρ, a
fixed density.
Consider the case of larger and larger “boxes.” The pictures of bands
just need to be modified by restricting to a lattice of wavevectors,
which grows denser and denser.
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Band Theory - the role of Fermi-Dirac statistics

I bring this up to clarify the role of statistics. The ground-state for
finite volume Vi will fill up the first Ni/2 energy levels, since the Pauli
exclusion principle allows two electrons to occupy each energy level.
(Give them different spin vectors.) In the thermodynamic limit, you get
a Fermi energy and a Fermi surface.

(Thanks to Fuhrer and Adam for this 2D picture.)
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https://en.wikipedia.org/wiki/Fermi_energy
https://en.wikipedia.org/wiki/Fermi_surface
http://www.nature.com/nature/journal/v458/n7234/fig_tab/458038a_F1.html


Band Theory - the role of Fermi-Dirac statistics

We can now explain some important terminology:

an insulator is a material whose Fermi level is between two bands
(in the “forbidden energies”)

a conductor is a material whose Fermi level cuts across a band

The basic idea is that any perturbations of the system (like heat or an
electric field) will kick some electrons into states above the Fermi level,
where they will conduct. It takes a lot more energy if you need to jump
over an energy gap.
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Band Theory - the role of Fermi-Dirac statistics

Here’s a picture of how the different electrical forms of matter can be
distinguished (from Wikipedia).

In an insulator, the band below the level is called a “valence band” and
above is called a “conduction band.”
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https://en.wikipedia.org/wiki/Electronic_band_structure


Surface states

Ignoring the other limitations of the independent electron
approximation, we cannot ignore the fact that crystals do not extend
forever. The potential looks something like this:
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Surface states

Given the vast number of atoms in just one small piece of matter, it’s
reasonable to use the Bloch solutions in the interior. Near the
boundary, however, these are not a good model.

There are solutions that “localize” along the surface, known as surface
states. They may have their own dispersion relations.
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https://en.wikipedia.org/wiki/Surface_states
https://en.wikipedia.org/wiki/Surface_states


Topological insulators

Now we can interpret the fundamental band diagram of a topological
insulator.

The bands (in green) of the surface states cross the Fermi level and
hence are conducting. The bulk is an insulator. (Thanks to Wikipedia.)
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