
1 Introduction

This note is an attempt to unpack a lecture by Kevin Costello at the Northwestern CDO workshop
in summer 2011, which gave an explanation for where the curved βγ system comes from. The
idea is to approach the usual two-dimensional sigma model with Hermitian target in two steps:

(1) we scale the metric on the target manifold until it becomes “infinitely big” (this drastically
simplifies the problem, as we’ll show), and

(2) we show that this infinite-volume theory “splits” into a holomorphic and antiholomorphic
theory (physicists use “chiral and antichiral splitting”).

The chiral part is the curved βγ system.
The core aspects of this construction can be seen by having a complex vector space as the target

manifold. After introducing the ingredients of our theory, we rework the usual action functional
into a form better suited to our purposes. This first-order formulation of the theory makes the
infinite-volume limit easy to understand and motivate. Finally, we exploit a special property of
the theory — arising from the interplay between the differential geometry of the source 2-manifold
and the target Hermitian manifold — to obtain the splitting.

2 The ingredients

The input data of our classical field theory is the following.

• Let S be an oriented real 2-manifold with a metric g. (We will indicate as we go along why
everything only depends on the conformal class of g.) We denote the associated volume
form by dvolg and the dual inner product on Ω1

S by g∨.

• Let V be an even-dimensional real vector space, equipped with a complex structure by J (so
we can view V as complex, when needed). It is equipped with a hermitian inner product h,
also written (−,−)V .1

• Let V∨ denote the dual real vector space. We denote its dual complex structure by J∨. There
is a canonical evaluation pairing ev : V ⊗V∨ → R, and we have

ev(Jv, λ) = λ(Jv) = ev(v, J∨λ)

by definition.

• Let Ωk
S(V) denote the V-valued k-forms, i.e., Ωk

S ⊗R V.

1Recall this means that h is a an ordinary inner product on the real vector space V and that J is an isometry.
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Consider the Hodge star operator ∗ on Ω1
S arising from g.2 A computation in local coordinates

shows that ∫
S

h⊗ g∨(α, β)dvolg =
∫

S
h(∗α ∧ β),

where the right hand side means “apply h to the V-component but simply wedge the 1-form
components.”

3 The first-order formulation of the sigma model

Let f : S→ V be a smooth map. The usual action functional for the sigma model is

SSO( f ) =
∫

S
h⊗ g∨(d f , d f )dvolg .

The subscript SO stands for “second-order.”
There is an equivalent description of the same classical field theory where the fields are f ∈

Maps(S, V) and A ∈ Ω1
S(V

∨) and the action functional is

SFO( f , A) =
∫

S
ev(d f ∧ A)− 1

2

∫
S

h∨(∗A ∧ A).

The subscript FO stands for “first-order.” This first-order action functional motivates the action
functional we finally work with.

Lemma 3.1. The equations of motion for SFO are

d f = ∗h∨A and dA = 0,

and so solutions are given by all f such that d(∗d f ) = 0. This space of solutions is exactly the same as
solutions to the equation of motion

4g f = (∗d∗)d f = 0

for SSO.

Proof. We obtain the equations of motion for SSO first. We have

SSO( f ) =
∫

S
h(∗d f ∧ d f ) = −

∫
S

h((d ∗ d f ) ∧ f ) = −
∫

S
h(4g f , f )dvolg,

2We use the following convention. Pick an orthonormal frame {e1, e2} such that e1 ∧ e2 is the volume form dvolg.
Then ∗ satisfies

∗e1 ∧ e1 = e1 ∧ e2 ⇒ ∗e1 = −e2

and
∗e2 ∧ e2 = e1 ∧ e2 ⇒ ∗e2 = e1,

and so
∗e1 ∧ ∗e2 = (−e2) ∧ e1 = e1 ∧ e2.
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where we use integration by parts in the second step and the fact that ∗ preserves inner products
in the last step. The usual variational procedure then recovers the equation of motion.

Now we treat SFO. We obtain the equation dA = 0 by considering a variation f → f + δ f . On
the other hand, a variation A→ A + δA has the following consequences for the second term,

1
2

∫
S

h∨(∗δA ∧ A) +
1
2

∫
S

h∨(∗A ∧ δA) =
∫

S
h∨(∗A ∧ δA),

and so we need d f − h∨ ∗ A = 0.
Now observe that

d f = ∗h∨A⇔ ∗d f = −h∨A,

so we need
d(∗d f ) = 0,

to satisfy the equations of motion for SSO.

4 An involution on the space of fields

We now explore a special property of the fields, arising from the fact that the source is 2-dimensional
and the target is Hermitian. Because ∗2 = −1, it provides a natural complex structure on Ω1

S. Thus,
we obtain two involutions:

• on Ω1
S(V), there is σ := ∗ ⊗ J, and

• on Ω1
S(V

∨), there is σ∨ := ∗ ⊗ J∨.

By using this polarization of the fields, we will obtain eventually the desired chiral decomposition.

Lemma 4.1. The operator σ gives an eigenspace decomposition

Ω1
S(V) = Ω1

S(V)+ ⊕Ω1
S(V)−

where Ω1
S(V)± denotes the ±1-eigenspace of σ, and likewise for Ω1

S(V
∨).

Proof. Let Π± denote the endomorphism 1
2 (1± σ) on Ω1

S(V). Then

Π2
+ =

1
4
(1 + 2σ + σ2) = Π+,

so Π+ is a projection operator (and likewise for Π−). As 1 = Π+ + Π−, we obtain the decomposi-
tion.

Definition 4.2. We define d± : Ω0
S(V)→ Ω1

S(V)± as Π± ◦ d.
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Consider the natural evaluation pairing

evS : Ω1
S(V)⊗Ω1

S(V
∨) → R

v⊗ λ 7→
∫

S ev(v ∧ λ)
.

Observe that

evS(σv, σ∨λ) =
∫

S
ev(∗Jv ∧ ∗J∨λ)

=
∫

S
ev(Jv, J∨λ)

=
∫

S
ev(J2v, λ)

= −evS(v, λ),

where in the second line we used the fact that ∗α ∧ ∗β = α ∧ β for any α, β in Ω1
S. Thus we obtain

the following.

Lemma 4.3. With respect to the pairing evS, Ω1
S(V)+ is orthogonal to Ω1

S(V
∨)+, and Ω1

S(V)− is orthog-
onal to Ω1

S(V
∨)−.

5 Replacing the first-order action functional

We introduce a new theory whose fields are f ∈ C∞
S (V) and B ∈ Ω1

S(V
∨)−. The action functional

is
S+( f , B) =

∫
S

ev(d+ f ∧ B)− 1
2

∫
S

h∨(∗B ∧ B).

It might seem like this action only sees half the information of SSO or SFO, but it is actually equiva-
lent. We begin with the heuristic argument before delving into a careful proof in the BV formalism.

5.1 The heuristic argument

There is an illuminating “completing the square” maneuver. Consider the following automor-
phism on the space of fields:

f 7→ f and B 7→ B + h(d+ f ).3

When we apply S+ after this transformation, our integrand is a sum of six terms:

ev(d+ f ∧ B) + ev(d+ f ∧ h(d+ f ))− 1
2

h∨(∗B ∧ B)

− 1
2
(
h∨(∗h(d+ f ) ∧ B) + h∨(∗B ∧ h(d+ f ))

)
− 1

2
h∨(∗h(d+ f ) ∧ h(d+ f )).

3For v ∈ V, hv denotes the element h(v,−) ∈ V∨.
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We can simplify this sum.
First, note that the fourth and fifth terms (which are grouped together already) are equivalent

to
−1

2
(ev(∗d+ f ∧ B) + ev(∗B ∧ d+ f )) ,

and thus together cancel the first term.
Second, note that the second term is equivalent to h(d+ f ∧ d+ f ). This term vanishes because

for any one-form α, α ∧ α = 0.
The last term is the most interesting: the last term recovers the usual sigma model action.

Lemma 5.1. The last term
−1

2
h∨(∗h(d+ f ) ∧ h(d+ f ))

is equivalent to −h(∗d f ∧ d f )/4.

Proof. Recall d+ = Π+d = (1/2)(1 + σ)d. Thus

4h(∗d+ f ∧ d+ f ) = h(∗(1 + σ)d f ∧ (1 + σ)d f )

= h(∗d f ∧ d f ) + h(∗σd f ∧ d f ) + h(∗d f ∧ σd f ) + h(∗σd f ∧ σd f )

= h(∗d f ∧ d f )− ih(d f ∧ d f ) + ih(∗d f ∧ ∗d f ) + h(d f ∧ ∗d f )

= 2h(∗d f ∧ d f ).

The initial term arises just by canceling out the excess copies of h and h∨.

All that remains to understand is the third term − 1
2 h∨(∗B ∧ B). From a heuristic perspective,

it’s irrelevant: for the classical theory, the only critical point is B = 0, and for the quantum theory,
it contributes nothing of interest (just an extra space of fields equipped with a Gaussian measure
centered at zero).

To summarize, we have made an “upper-triangular” change of coordinates on the space of
fields. At the classical level, we recover the same equations of motion. At the quantum level,
the nonexistent Lebesgue measure is preserved and the weight e−S+ factors into e−SSO times a
Gaussian.

5.2 The BV argument

In fact, it is fairly straightforward to rephrase this heuristic argument into a rigorous statement in
the BV formalism.4

4Costello’s manipulations of pure Yang-Mills theory are our model throughout.
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The ingredients Our fields are f ∈ C∞
S (V) and B ∈ Ω1

S(V
∨)−, so we introduce “antifields”

f ∨ ∈ Ω2
S(V

∨) and B∨ ∈ Ω1
S(V)+. As usual, the fields have cohomological degree 0 and the

antifields have cohomological degree 1, as below.

0 1
C∞

S (V) Ω2
S(V

∨)

⊕ ⊕
Ω1

S(V
∨)− Ω1

S(V)+

(fields) (antifields)

We equip this graded vector space E with the following symplectic pairing of cohomological de-
gree −1:

〈 f , f ∨〉 =
∫

S
ev( f , f ∨),

〈 f , f ∨〉 = −〈 f ∨, f 〉,

〈B, B∨〉 = −
∫

S
ev(B∨ ∧ B),

〈B, B∨〉 = −〈B∨, B〉,

with all other pairings automatically zero (e.g., 〈 f , B〉 = 0). This is simply the shifted antisym-
metrization of evS.

We thus obtain a free BV theory (in the sense of Costello) as the following elliptic complex,

C∞
S (V)

d+→ Ω1
S(V)+

Ω1
S(V

∨)−
d→ Ω2

S(V
∨)

,

where we simply extracted the quadratic part of S+.
In particular, let Φ = ( f , f ∨, B, B∨) denote an element of E . Then the free BV theory has action

functional

S f ree(Φ) = −1
2
〈Φ, QΦ〉

= −1
2
〈( f , f ∨, B, B∨), (0, dB, 0, d+ f )〉

= −1
2
(〈 f , dB〉+ 〈B, d+ f 〉)

= −1
2

(∫
S

ev( f , dB)−
∫

S
ev(d+ f ∧ B)

)
=
∫

S
ev(d+ f ∧ B).

Thus we recover the free part of S+.
In full, we have

S+(Φ) = −1
2
〈Φ, QΦ〉+ 1

2
〈B, h∨(∗B)〉.
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Equivalence at the classical level In the classical BV formalism, two different action function-
als S and S′ give equivalent classical theories if they are cohomologous in the cochain complex
(Oloc(E ), {S,−}). (Here we assume S satisfies the classical master equation {S, S} = 0.) Using
more geometric language, we say that S and S′ live in the same orbit of the gauge group of sym-
plectomorphisms acting on the space of fields E (and hence on the space of action functionals
Oloc(E )).5

In fact, this setting lets us dress up the heuristic picture, as follows. We replace the change of
coordinates by modifying S+ by a boundary in (Oloc, {S+,−}).

Lemma 5.2. Let H denote the local functional of cohomological degree −1 where

H(Φ) = 〈∗h(d+ f ), B∨〉.

Then
{S+, H} = SSO − S f ree,

so S+ is cohomologous to

SSO −
1
2
〈B, h∨(∗B)〉

in (Oloc, {S+,−}).

Proof. Observe
{S f ree, H} = ±〈∗h(d+ f ), d+ f 〉 = ±SSO.

In the first equality, we use that the shifted Poisson bracket {−,−} is dual to 〈−,−〉. In the second
equality, we use lemma 5.1.

A parallel computation shows that {I, H}, where I denotes the “interaction term” of S+, re-
covers ±S f ree.

The action functional SSO ± I thus defines a classical BV theory equivalent to S+. Note, how-
ever, that this action functional completely decouples f and B. The term SSO only depends on f , and
the term I only depends on B. Moreover, the critical point of I is {B = 0}, so the equations of
motion pick out the same solutions as SSO on its own.

Equivalence at the quantum level In our setting of a linear target with linear metric, we have
shown that the classical BV theory specified by S+ is equivalent to a free BV theory, given by the
elliptic complex

C∞
S (V)

4g dvolg−→ Ω2(V)

Ω1
S(V

∨)−
Id−→ Ω1

S(V
∨)−

,

5To relate these two assertions, note that the cochain complex, once shifted, is a dg Lie algebra that describes the
formal neighborhood of S in the moduli space of classical field theories on E . Thus, if they are cohomologous, we can
construct a Hamiltonian flow moving from S to S′.
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once one writes down a suitable pairing 〈−,−〉.6 As the second line is acyclic, we see it is irrelevant
to both the classical and quantum theories. In particular, as the theory is free, we can quantize
immediately and show that the quantum observables are homotopy-equivalent to the quantum
observables constructed just from the first line.

This argument is another way of saying “we can integrate out the B fields and they do not
affect any observables” (cf. Costello’s discussion of Yang-Mills).

Remark 5.3. This argument is the only piece that does not port immediately to the case of a curved
target. In that case, we need to verify we can construct a quantization. Nonetheless, it is plausible
that we could quantize while maintaining the complete decoupling of the f and B fields, in which
case we could work with just the subcomplex depending on the f fields.

6 The infinite volume limit

As S+ is equivalent to SSO, we hereafter focus on S+. Our goal is to study a degenerate limit of S+

where the situation drastically simplifies.
The idea is quite simple: if we scale the metric h∨ to th∨, then as t goes to zero, we scale away

the dependence on h∨ in S+. The limit theory is then independent of the hermitian inner product
on V. Note that on V, the limit t → 0 is equivalent to scaling h to h/t, so that the volume of any
cube grows toward infinity.

Definition 6.1. The infinite volume limit is the action functional

SIVL( f , B) =
∫

S
ev(d+ f ∧ B),

with f ∈ C∞
S (V) and B ∈ Ω1

S(V)−.

The equations of motion are d+ f = 0 and dB = 0.

7 The chiral splitting

The operator d+ interacts nicely with the complexifications of our spaces of fields, and thus we
will be able to massage our theory into another, appealing form.

Consider the decompositions

Ω1
S ⊗R C = Ω1,0

S ⊕Ω0,1
S

and
V ⊗R C = V1,0 ⊕V0,1.

6We chose to change the pairing so that the elliptic complex is simple. Alternatively, we could have retained the
same pairing but written a complicated-looking elliptic complex.
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We have the respective projection operators

p1,0
S =

1
2
(1− i∗),

p0,1
S =

1
2
(1 + i∗),

p1,0
V =

1
2
(1− i J),

p1,0
V =

1
2
(1 + i J).

By an explicit computation, we see

p0,1
S ⊗ p1,0

V =
1
4
(1 + i ∗ −i J + ∗J)

and
p1,0

S ⊗ p0,1
V =

1
4
(1− i ∗+i J + ∗J),

so
p0,1

S ⊗ p1,0
V + p1,0

S ⊗ p0,1
V =

1
2
(1 + ∗J) = Π+,

where we’ve extended scalars on Π+ so that it works on the complexified Ω1
S(V)C.

The following result is an immediate consequence.

Lemma 7.1. On Ω∗S(V)C, we have
d+ = ∂V1,0 + ∂V0,1 .

Proof. Note that

Ω1
S(V)C ∼= (Ω1

S)
C ⊗C VC

∼= Ω1,0(V1,0)⊕Ω1,0(V0,1)⊕Ω0,1(V1,0)⊕Ω0,1(V0,1).

We thus need simply to unravel the relevant projections.
Recall that ∂ means “project the image of d onto the −i-eigenspace of (Ω1)C.” Hence, as an

example, ∂V1,0 : Ω0
S(V

1,0)→ Ω0,1
S (V1,0) is precisely the operator

(p0,1
S ◦ d)⊗ 1V1,0 .

Plugging in all the relevant operators, we obtain the desired result.

We write the elliptic complex of fields, once the fields are complexified, using the decomposi-
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tion of d+ given above. This specifies a free BV theory:

Ω0,0
S (V1,0)

∂V1,0−→ Ω0,1
S (V1,0)

⊕ ⊕

Ω0,0
S (V0,1)

∂V0,1−→ Ω1,0
S (V0,1)

⊕ ⊕

Ω1,0
S (V∨ 0,1)

∂V∨ 0,1−→ Ω1,1
S (V∨ 0,1)

⊕ ⊕

Ω0,1
S (V∨ 1,0)

∂V∨ 1,0−→ Ω1,1
S (V∨ 1,0)

.

We can separate this into a direct sum of two theories, one holomorphic (the pieces involving ∂)
and one antiholomorphic (the pieces involving ∂). Equivalently, we view this as working with one
complex structure and its conjugate.

Lemma 7.2. On the complexified fields,

SIVL( f , f , B, B) =
∫

S
ev(∂ f ∧ B) +

∫
S

ev(∂ f ∧ B).

When restricted to the real points, it recovers the infinite volume limit action.
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