Weyl group multiple Dirichlet series

Paul E. Gunnells

UMass Amherst

August 2010
Let Φ be an irreducible root system of rank r.

Our goal: explain general construction of multiple Dirichlet series in r complex variables $s = (s_1, \ldots, s_r)$

$$Z(s) = \sum_{c_1, \ldots, c_r} \frac{a(c_1, \ldots, c_r)}{c_1^{s_1} \ldots c_r^{s_r}}$$

satisfying a group of functional equations isomorphic to the Weyl group W of Φ.

The functional equations intermix all the variables, and are closely related to the usual action of W on the space containing Φ.
Example

Let $\Phi = A_2$, $W = \langle \sigma_1, \sigma_2 \mid \sigma_i^2 = 1, \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The desired functional equations look like

$$\sigma_1 : s_1 \rightarrow 2 - s_1, s_2 \rightarrow s_1 + s_2 - 1, \quad \sigma_2 : s_1 \rightarrow s_1 + s_2 - 1, s_2 \rightarrow 2 - s_2$$
Why?

- Such series provide tools for certain problems in analytic number theory (moments, mean values, etc.).
- Conjecturally these series arise as Fourier–Whittaker coefficients of Eisenstein series on metaplectic groups:

\[1 \to \mu_n \to \tilde{G}(\mathbb{A}_F) \to G(\mathbb{A}_F) \to 1 \]

This has been proved in some cases (type A and type B (double covers)).

- The series are built out of arithmetically interesting data, such as Gauss sums, \(n \)th power residue symbols, Hilbert symbols, and (sometimes) \(L \)-functions.
- The objects that arise in the construction have interesting relationships with combinatorics, representation theory, and statistical mechanics.
Let $E^*(z, s)$ be the half-integral weight Eisenstein series on $\Gamma_0(4)$:

$$E^*(z, s) = \sum_{\Gamma_\infty \backslash \Gamma_0(4)} j_{1/2}(\gamma, z)^{-1} \Im(\gamma z)^{s/2}. $$

Maass showed that its dth Fourier coefficient is essentially

$$L(s, \chi_d),$$

where χ_d is the quadratic character attached to $\mathbb{Q}(\sqrt{d}/\mathbb{Q})$.

Essentially means up to the Euler 2-factor, archimedean factors, and certain correction factors that have to be inserted when d isn’t squarefree.
Siegel, Goldfeld–Hoffstein

Siegel (1956), Goldfeld–Hoffstein (1985):

\[
Z(s, w) = \int_0^\infty (E^*(iy, s/2) - \text{const term}) y^w \frac{dy}{y}.
\]

The result is a Dirichlet series roughly of the form

\[
Z(s, w) \approx \sum_d \frac{L(s, \chi_d)}{d^w}.
\]

This behaves well in \(s\) since it’s built from the Dirichlet \(L\)-functions, and it turns out to have nice analytic properties in \(w\) as well. Goldfeld–Hoffstein used this to get estimates for sums like

\[
\sum_{|d|<X} \left| \sum_{d \text{ fund.}} L(1, \chi_d) \right|, \quad \sum_{|d|<X} \left| \sum_{d \text{ fund.}} L\left(\frac{1}{2}, \chi_d\right) \right|.
\]
$Z(s, w)$ satisfies a functional equation in s, again because of the Dirichlet L-functions. But it turns out that it satisfies extra functional equations.

In fact, Z satisfies a group of 12 functional equations, and is an example of a Weyl group multiple Dirichlet series of type A_2. There is a subgroup of functional equations isomorphic to $S_3 = W(A_2)$, and an extra one swapping s and w that corresponds to the outer automorphism of the Dynkin diagram:
Connection to A_2

Why is this series related to root system A_2 (besides the fact that there are two variables and I drew the picture that way)?

Imagine expanding the L-functions in the rough definition:

$$Z(s, w) = \sum_{d} \frac{L(s, \chi_d)}{d^w} = \sum_{d} d^w \sum_{c} \left(\frac{d}{c}\right) c^{-s} = \sum_{d,c} \left(\frac{d}{c}\right) c^{-s} d^{-w}.$$
Heuristically, the multiple Dirichlet series looks like

\[Z(s) = \sum_{c_1, \ldots, c_r} \frac{a(c_1, \ldots, c_r)}{c_1^{s_1} \cdots c_r^{s_r}} \]

where \(a(c_1, \ldots, c_r) \) is a product of \(n \)th power residue symbols corresponding to the edges of the Dynkin diagram.

For instance, \(D_4, n = 2 \) leads to a series related to the third moment of quadratic Dirichlet \(L \)-functions.
Setup

- F number field with $2n$th roots of unity
- S set of places of F containing archimedean, ramified, and such that \mathcal{O}_S is a PID
- Φ irreducible simply-laced root system of rank r
- $\{\alpha_1, \ldots, \alpha_r\}$ the simple roots
- $m = (m_1, \ldots, m_r)$ r-tuple of integers in \mathcal{O}_S
- $s = (s_1, \ldots, s_r)$ r-tuple of complex variables
Setup

- $F_S = \prod_{v \in S} F_v$
- $\mathcal{M}(\Phi)$ certain finite-dimensional space of complex-valued functions on $(F_S^\times)^r$ (to deal with Hilbert symbols and units)
- $\Psi \in \mathcal{M}(\Phi)$
- $H(c; m)$ to be specified later ... this is the most important part of the definition
Then the multiple Dirichlet series looks like

\[Z(s; m, \Psi; \Phi, n) = \sum_c \frac{H(c; m) \Psi(c)}{\prod |c_i|^{s_i}} , \]

where \(c = (c_1, \ldots, c_r) \) and each \(c_i \) ranges over \((\mathcal{O}_S \setminus \{0\})/\mathcal{O}_S^\times \).
The function H

The coefficients H have to be carefully defined to guarantee that Z satisfies the desired group of functional equations. General considerations tell us how to define H in the following cases:

- When $c_1 \cdots c_r$ and $c'_1 \cdots c'_r$ are relatively prime, one uses a "twisted multiplicativity" to construct $H(cc'; m)$ from $H(c; m)$ and $H(c'; m)$. One puts

$$H(cc'; m) = \varepsilon(c, c') H(c; m) H(c'; m),$$

where $\varepsilon(c, c')$ is a root of unity built out of residue symbols and root data:

$$\varepsilon(c, c') = \prod_{i=1}^{r} \left(\frac{c_i}{c'_i} \right) \left(\frac{c'_i}{c_i} \right) \prod_{i < j} \left(\frac{c_i}{c'_j} \right) \left(\frac{c'_i}{c_j} \right).$$
The function H

When $(c_1 \cdots c_r, m'_1 \cdots m'_r) = 1$, we can define $H(c; mm')$ in terms of $H(c; m)$ and certain power residue symbols:

$$H(c; mm') = \prod_{j=1}^{r} \left(\frac{m'_j}{c_j} \right) H(c; m)$$
The function H

So we reduce the definition of H to that of

$$H(\varpi^{k_1}, \ldots, \varpi^{k_r}; \varpi^{l_1}, \ldots, \varpi^{l_r}),$$

where ϖ is a prime in \mathcal{O}_S.

This leads naturally to the generating function

$$N = N(x_1, \ldots, x_r)$$

$$= \sum_{k_1, \ldots, k_r \geq 0} H(\varpi^{k_1}, \ldots, \varpi^{k_r}; \varpi^{l_1}, \ldots, \varpi^{l_r}) x_1^{k_1} \cdots x_r^{k_r}$$

(m is fixed). One can ask what properties this series has to satisfy so that one can prove Z satisfies the right group of functional equations.
The function N

\[N = N(x_1, \ldots, x_r) = \sum_{k_1, \ldots, k_r \geq 0} H(\omega^{k_1}, \ldots, \omega^{k_r}) x_1^{k_1} \cdots x_r^{k_r}. \]

If one puts $x_i = q^{-s_i}$, where $q = |\mathcal{O}_S/\mathfrak{o}|$, then one can see that the global functional equations imply N must transform a certain way under a certain W-action.

This leads to a connection with characters of representations of \mathfrak{g}, the simple complex Lie algebra attached to Φ.

In this relationship the monomials correspond to certain weight spaces.
Building N

The connection with characters leads to two approaches to defining N:

- **Crystal graphs.** These are models for \mathfrak{g} representations that have various combinatorial incarnations (Gelfand–Tsetlin patterns, tableaux, Proctor patterns, Littlemann path model, ...). One tries to extract a statistic from the combinatorial model to define the coefficients of N. (Brubaker–Bump–Friedberg, Beineke–Brubaker–Frechette, Chinta–PG)

- **Weyl character formula.** This is an explicit expression for a given character as a ratio of two polynomials. We take this approach and define a deformation of Weyl’s formula that reflects the metaplectacticy (metaplectaciousness?) of the setup. (Chinta–PG, Bucur–Diaconu)
\begin{itemize}
 \item Λ_w weight lattice of Φ
 \item $\{\omega_1, \ldots, \omega_r\}$ fundamental weights
 \item $\rho = \sum \omega_i$ the Weyl vector
 \item $\mathbb{Z}[y_1^{\pm 1}, \ldots, y_r^{\pm 1}]$ group ring of the weight lattice ($y_i \leftrightarrow \omega_i$)
 \item θ a dominant weight
\end{itemize}

Then according to Weyl the character of the irreducible representation of highest weight θ is

$$
\chi_{\theta} = \frac{\sum_{w \in W} \text{sgn}(w) y^{w(\theta + \rho) - \rho}}{\prod_{\alpha > 0} (1 - y^{-\alpha})} = \sum_{w \in W} \text{sgn}(w) y^{w(\theta + \rho) - \rho} \frac{1}{\Delta(y)}.
$$

$$
\Delta(y) = \prod_{\alpha > 0} (1 - y^{-\alpha}).
$$
Our goal now is to define the W-action leading to H. For the application to multiple Dirichlet series, we normalize things slightly differently. Thus we work with the root lattice, introduce some $q = |\mathcal{O}_S/\varpi|$ powers, shift the character around, …

- Λ root lattice of Φ
- $d: \Lambda \to \mathbb{Z}$ height function on the roots
- $A \simeq \mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]$ complex group ring of Λ ($x_i \leftrightarrow \alpha_i$)
- $\tilde{A} \simeq \mathbb{C}(x_1, \ldots, x_r)$ fraction field of A
- $\theta = \rho + \sum l_i \omega_i$ a strictly dominant weight (recall that we’re defining $H(c; m)$ when $m = (\varpi^{l_1}, \ldots, \varpi^{l_r})$)
The action on monomials

We let the Weyl group act on monomials through a “change of variables” map. This is essentially the same as the geometric action of W on the root lattice (except for the q power).

If $f(x) = x^\beta$, we put

$$f(wx^\beta) = q^{d(w^{-1}\beta - \beta)} x^{w^{-1}\beta}.$$
Affine action of W

Given any $\lambda \in \Lambda$, we put

$$w \cdot \lambda = w(\lambda - \theta) + \theta,$$

where the action on the right hand side is the usual action on the root lattice. This just performs an affine reflection of $\Lambda \otimes \mathbb{R}$ (the same as the usual w reflection but shifted to have center θ).

If σ_i is a simple reflection, we put

$$\mu_i(\lambda) = d(\sigma_i \cdot \lambda - \lambda).$$

This is just the multiple of α_i needed to go from λ to $\sigma_i \cdot \lambda$.
Affine action of W

\[\theta \]

\[\lambda \]

\[\sigma_1 \bullet \lambda \]
Gauss sums

Choose some complex numbers $\gamma(i)$, $i = 1, \ldots, n - 1$ such that $\gamma(i)\gamma(n - i) = 1/q$. Put $\gamma(0) = -1$.

Ultimately these numbers will be Gauss sums (the same ones appearing in the metaplectic cocycle), but actually any complex numbers satisfying these relations will work.

Extend $\gamma(i)$ to all integers by reducing $i \mod n$.
Homogeneous decomposition

The action on a monomial $f(x) = x^\beta$ depends on the congruence class of the monomial mod $n\Lambda$.

To treat general rational functions, we decompose \tilde{A} into homogeneous parts

$$\tilde{A} = \bigoplus_{\lambda \in \Lambda/n\Lambda} \tilde{A}_\lambda.$$

A_λ consists of those rational function f/g where all monomials in g lie in $n\Lambda$ and those in f map to λ modulo $n\Lambda$.

e.g.,

$$\frac{1 - xy}{x^2 - y^2} = \frac{1}{x^2 - y^2} - \frac{xy}{x^2 - y^2}$$
Finally

Theorem (Chinta–PG) Suppose $f \in A_\beta$. Let σ_i be a simple reflection and let $(k)_n$ be the remainder upon division of k by n. Then

$$
(f|_{\theta \sigma_i})(x) = (qx_i)^{l_i+1-(\mu_i(\beta))_n} \frac{1 - 1/q}{1 - q^{n-1}x_i^n} f(\sigma_i x)
(P)
$$

$$
- \gamma(\mu_i(\beta)) \cdot (qx_i)^{l_i+1-n} \frac{1 - (qx_i)^n}{(1 - q^{n-1}x_i^n)} f(\sigma_i x)
(Q)
$$

extends to a W-action on $\mathbb{C}(x_1, \ldots, x_r)$.

Paul E. Gunnells (UMass Amherst) Weyl group multiple Dirichlet series August 2010 25 / 33
The W-action
The W-action

\mathbf{x}^β
The W-action

\[x^\beta \]

\[\sigma_i \cdot x^\beta \]
The W-action

\[x^\beta \]

\[Q \]

\[\sigma_i \cdot x^\beta \]

\[P \]
Theorem (Chinta–PG)

- Put $\Delta(x) = \prod_{\alpha > 0} (1 - q^n x^{n\alpha})$ and $D(x) = \prod_{\alpha > 0} (1 - q^{n-1} x^{n\alpha})$.
 Then
 \[
 h(x) = \sum_{w \in W} \frac{(1|\theta w)(x)}{\Delta(wx)}
 \]
 is a rational function such that hD is a polynomial.

- Let $N = hD$, define H by
 \[
 N = \sum_{k_1, \ldots, k_r \geq 0} H(\varpi^{k_1}, \ldots, \varpi^{k_r}; \varpi^{l_1}, \ldots, \varpi^{l_r}) x_1^{k_1} \cdots x_r^{k_r},
 \]
 and specialize the $\gamma(i)$ to the appropriate Gauss sums. Then the resulting multiple Dirichlet series $Z(s; m, \Psi; \Phi, n)$ has analytic continuation to \mathbb{C}^r and satisfies a group of functional equations isomorphic to W.
Here $g_1 = q \gamma(1)$ and the notation (a, b) means

$$\theta = (a + 1) \omega_1 + (b + 1) \omega_2.$$

- $(0, 0)$: $1 + g_1 x + g_1 y - g_1 q x^2 y - g_1 q x y^2 - q^2 x^2 y^2$
- $(1, 0)$: $1 - q x^2 + g_1 y - g_1 q x^2 y + g_1 q^2 x^2 y + q^3 x^3 y - g_1 q^3 x^2 y^3 - q^4 x^3 y^3$
- $(1, 1)$: $1 - q x^2 - q y^2 + q^2 x^2 y^2 - q^3 x^2 y^2 + q^4 x^4 y^2 + q^4 x^2 y^4 - q^5 x^4 y^4$
- $(2, 1)$:

 $1 - q x^2 + q^2 x^2 + g_1 q^2 x^3 - q y^2 + q^2 x^2 y^2 - 2 q^3 x^2 y^2 + q^4 x^2 y^2 - g_1 q^3 x^3 y^2 + g_1 q^4 x^3 y^2 + q^4 x^4 y^2 - q^5 x^4 y^2 - g_1 q^5 x^5 y^2 + q^4 x^2 y^4 - q^5 x^2 y^4 - g_1 q^5 x^3 y^4 + g_1 q^6 x^3 y^4 - q^5 x^4 y^4 + q^6 x^4 y^4 + g_1 q^6 x^5 y^4 - g_1 q^7 x^5 y^4 + q^7 x^3 y^5 - q^8 x^5 y^5$
Open questions

- The WCF method works for all Φ, whereas the crystal graph approach has only been worked out for some (classical) Φ. Can one do the latter for all Φ uniformly? (Kim–Lee, McNamara)

- Prove that Z is a Whittaker coefficient of a metaplectic Eisenstein series. (Chinta–Offen)

- Prove that the crystal graph descriptions and the WCF descriptions coincide. (Chinta–Offen + McNamara)

- Develop multiple Dirichlet series on affine Weyl groups and crystallographic Coxeter groups (Bucur–Diaconu, Lee)

- What is the geometric interpretation of Weyl group multiple Dirichlet series over function fields?
References

