HENRY JACOB MATHEMATICS COMPETITION

SAMPLE PROBLEMS FROM PREVIOUS COMPETITIONS

No calculators are allowed!

(1) (a) If \(f(x) = x^2 e^x \), find a formula for the \(n \)th derivative of \(f \).
(b) Prove that your formula is correct.

(2) What is the smallest possible area of a triangle whose sides are formed by the positive \(x \) and \(y \) axes and a line through the point \((1, 2)\)?

(3) Prove that for any positive integer \(n \), the expression \(1110^n + 1102^n - 200^n - 10^n \) is divisible by 2002.

(4) The \((5, 12, 13)\) right triangle has area and perimeter both equal to 30. Find all right triangles \(T \) with integral sides such that the area of \(T \) equals the perimeter of \(T \).

(5) Find
\[
\int_{-1}^{1} \frac{e^{1/x}}{x^2(1 + e^{1/x})} \, dx.
\]

(6) Let \(R(t) \) be the area of the region bounded by the \(y \)-axis, a positive continuous function \(f(x) \), a negative continuous function \(g(x) \), and the line \(x = t^4 \). Compute \(R'(2) \).

(7) A function is odd if \(f(-x) = -f(x) \). Prove that \(f(x) = \ln(x + \sqrt{x^2 + 1}) \) is odd.

(8) Show that there are infinitely many squares that are the sum of a square and a prime.

(9) Let \(g(x) \) be the greatest integer less than or equal to \(x \). For example \(g(\pi) = 3 \) and \(g(-\pi) = -4 \). Sketch the graphs of the following:
(a) \(y = g(x) \)
(b) \(g(y) = g(x) \)
(c) \(g(y) = |g(x)| \)

(10) Find a polynomial \(P \) with \(P(1) = 1, P(2) = 2, P(3) = 2003 \).

(11) An “hourglass” is formed by rotating the graph of \(y = e^x \) about the line \(y = x \). Find the largest tangent sphere that can be passed through the neck of the hourglass.

(12) (a) Show that \(x/y + y/z + z/x = 1 \) has no solution in positive integers.
(b) Find a solution to \(x/y + y/z + z/x = 5 \) in positive integers.