Errata for Papantonopoulou text

• Problem 2.5.10 asks the student to show that the automorphism group of \mathbb{Z}_p is isomorphic to \mathbb{Z}_{p-1}, where p is prime. The book has already shown that the automorphism group is the group of units of \mathbb{Z}_p, so the students know that the order is $p - 1$. But showing that it’s cyclic is, as far as I know, beyond anything they can do at this point.

• Problem 4.4.16 says “Let G be a group acting on itself by conjugation. Show that if a and b are conjugates in G, then the centralizers $C(a)$ and $C(b)$ are equal if and only if these centralizers are normal subgroups of G.” One direction is easy, of course, but the other direction doesn’t seem to be true even if you assume a and b are distinct—e.g., $a = (123)$ and $b = (132)$ in S_6.

• Definitions 7.2.22 and 7.2.23 (of prime and maximal ideals) require the ideals to be nontrivial. But then Theorem 7.2.27, which says that (in a commutative ring with 1), an ideal is prime (maximal) if and only if the quotient mod that ideal is a domain (field) isn’t right.

• Problem 8.3.23 The polynomial doesn’t have to be of degree n even if it’s not the 0 polynomial, just of degree at most n. And if all the b_i are 0, you get the 0 polynomial, which doesn’t have degree.

• Definition 10.1.2 (of vector space) requires $a \cdot (v + w) = (a \cdot v) + (a \cdot w)$ but not $(a + b) \cdot v = (a \cdot v) + (b \cdot v)$ I think both distributive laws are needed.

• In problem 10.2.1, I’m not sure how the students are expected to compute the degree of $\sqrt{2} + \sqrt{3}$ over $\mathbb{Q}(\sqrt{5})$. This seems like it’s much more substantial than the other parts of the problem, at least if done carefully.

• The subfield lattice in the solutions manual for problem 10.3.14 isn’t right. It ought to have a $\mathbb{Q}(\sqrt{3})$, for example.

• In the definition of the Frobenius map just before Prop. 10.4.8, a φ gets switched to an f.

• In 11.1, there’s a missing statement of a proposition (that sum/difference of constructible numbers is constructible?).

• On page 430 in the proof of Galois’s theorem, the quotient group $G(L/E)/G(l/F)$ has the numerator and denominator reversed.