
LINEAR RECURRENCES AND RATIONAL GENERATING

FUNCTIONS

Let f(x) =
∑

k akx
k be a generating function. We say the sequence

a0, a1, . . . satisfies a linear recurrence relation of order n if there exist con-
stants c1, . . . , cn such that

(1) ak = c1ak−1 + · · ·+ cnak−n

for all k ≥ N , where N is some fixed number ≥ n. The basic example is
the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . , which is defined by a0 = a1 = 1
and ak = ak−1 + ak−2 for k ≥ 2.

We have the following fact about the generating functions of sequences
defined by recurrences:

Theorem 1. Suppose the coefficients of f(x) =
∑
akx

k satisfy (1) for all
k ≥ N , where N ≥ n is given. Suppose further that the values ai for i < N
are known. Then

(2) f(x) =
P (x)

1− c1x− c2x2 − · · · − cnxn
,

where P (x) = A0 + A1x + . . . AN−1x
N−1 is a polynomial of degree at most

N − 1.

The coefficients of the numerator P (x) are determined by the ai, i <
N , but in general Ai 6= ai. A function of the form polynomial divided
by polynomial is called a rational function. Sometimes people summarize
the conclusion of the theorem by saying that the generating function of a
sequence defined by a linear recurrence is a rational function.

Consider the Fibonacci example. According to the theorem the generating
function for them can be written as

(3)
A0 +A1x

1− x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + · · ·

We can find the Ai by multiplying both sides of (3) by 1− x− x2. There is
a lot of cancellation (that’s in fact the whole point of how this works), and
we find

A0 +A1x = (1− x− x2)(1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + · · · )
= 1 + 0x+ 0x2 + 0x3 + · · · ,

which means A0 = 1 and A1 = 0. Thus

1

1− x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + · · ·

Here is how we can use an expression like (2) to get an explicit formula for
the ak. For simplicity we only discuss 2nd order recurrences with N = 2 (the
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general case is similar). Suppose one can break apart the rational function
into “partial fractions”:

(4)
P (x)

1− c1x− c2x2
=

A

1− αx
+

B

1− βx
.

Here A,B are constants, and α, β are the inverses of the roots of 1− c1x−
c2x

2. (This is slightly different from the partial fractions one usually sees
in calculus, because we want the denominators to look like 1 − αx, not
x − α . . . this reflects the fact that we use the inverses of the roots of the
denominator of the left hand side.) Then one can conclude that

(5) ak = Aαk +Bβk.

Why is (5) true? Because of the way the geometric series works:

(6)
1

1− αx
= 1 + αx+ α2x2 + α3x3 + . . .

Plug (6) into (4) along with the analogous series for 1/(1 − βx), and then
the cofficient of xk is computed by the right hand side of (5).

For instance, consider the Fibonacci example. The roots of 1 − x − x2
are r1 = (

√
5 − 1)/2 and r2 = (−

√
5 − 1)/2. The inverses of these are

1/r2 = α = (
√

5 + 1)/2 and 1/r1 = β = (−
√

5 + 1)/2. So we get

(7) ak = A((
√

5 + 1)/2)k +B((−
√

5 + 1)/2)k.

We just have to solve for A and B. We can use the first two values of k for
that:

1 = A+B

1 = A(
√

5 + 1)/2 +B(−
√

5 + 1)/2)

It’s somewhat painful to solve for A and B, but if we do we find

A = (5 +
√

5)/10, B = (5−
√

5)/10.

Here’s an application of an expression like (7). Since |(−
√

5 + 1)/2| < 1
and (

√
5 + 1)/2) > 1, it means that ak must be very close to A((

√
5 + 1)/2)k

for k large (because the other term in (7) will be close to 0). For example,
when k = 20, the Fibonacci number is 10946, and

A((
√

5 + 1)/2)100 = 10945.999981728 . . .

The relative error is 10−9. If k = 1000 the relative error between the ac-
tual Fibonacci number and this approximation is 10−419, an unimaginably
small number. How small is unimaginably small? The Planck length, which
supposedly is the distance at which quantum effects begin to dominate in
spacetime, is about 10−35 m. The uncertainty principle of quantum mechan-
ics means that we cannot measure distances smaller than this. Compared
to our relative error, this number is gigantic.


