LINEAR RECURRENCES AND RATIONAL GENERATING FUNCTIONS

Let $f(x)=\sum_{k} a_{k} x^{k}$ be a generating function. We say the sequence a_{0}, a_{1}, \ldots satisfies a linear recurrence relation of order n if there exist constants c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
a_{k}=c_{1} a_{k-1}+\cdots+c_{n} a_{k-n} \tag{1}
\end{equation*}
$$

for all $k \geq N$, where N is some fixed number $\geq n$. The basic example is the Fibonacci sequence $1,1,2,3,5,8,13, \ldots$, which is defined by $a_{0}=a_{1}=1$ and $a_{k}=a_{k-1}+a_{k-2}$ for $k \geq 2$.

We have the following fact about the generating functions of sequences defined by recurrences:
Theorem 1. Suppose the coefficients of $f(x)=\sum a_{k} x^{k}$ satisfy (1) for all $k \geq N$, where $N \geq n$ is given. Suppose further that the values a_{i} for $i<N$ are known. Then

$$
\begin{equation*}
f(x)=\frac{P(x)}{1-c_{1} x-c_{2} x^{2}-\cdots-c_{n} x^{n}}, \tag{2}
\end{equation*}
$$

where $P(x)=A_{0}+A_{1} x+\ldots A_{N-1} x^{N-1}$ is a polynomial of degree at most $N-1$.

The coefficients of the numerator $P(x)$ are determined by the $a_{i}, i<$ N, but in general $A_{i} \neq a_{i}$. A function of the form polynomial divided by polynomial is called a rational function. Sometimes people summarize the conclusion of the theorem by saying that the generating function of a sequence defined by a linear recurrence is a rational function.

Consider the Fibonacci example. According to the theorem the generating function for them can be written as

$$
\begin{equation*}
\frac{A_{0}+A_{1} x}{1-x-x^{2}}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\cdots \tag{3}
\end{equation*}
$$

We can find the A_{i} by multiplying both sides of (3) by $1-x-x^{2}$. There is a lot of cancellation (that's in fact the whole point of how this works), and we find

$$
\begin{aligned}
A_{0}+A_{1} x & =\left(1-x-x^{2}\right)\left(1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\cdots\right) \\
& =1+0 x+0 x^{2}+0 x^{3}+\cdots,
\end{aligned}
$$

which means $A_{0}=1$ and $A_{1}=0$. Thus

$$
\frac{1}{1-x-x^{2}}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\cdots
$$

Here is how we can use an expression like (2) to get an explicit formula for the a_{k}. For simplicity we only discuss 2 nd order recurrences with $N=2$ (the
general case is similar). Suppose one can break apart the rational function into "partial fractions":

$$
\begin{equation*}
\frac{P(x)}{1-c_{1} x-c_{2} x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x} . \tag{4}
\end{equation*}
$$

Here A, B are constants, and α, β are the inverses of the roots of $1-c_{1} x-$ $c_{2} x^{2}$. (This is slightly different from the partial fractions one usually sees in calculus, because we want the denominators to look like $1-\alpha x$, not $x-\alpha \ldots$ this reflects the fact that we use the inverses of the roots of the denominator of the left hand side.) Then one can conclude that

$$
\begin{equation*}
a_{k}=A \alpha^{k}+B \beta^{k} \tag{5}
\end{equation*}
$$

Why is (5) true? Because of the way the geometric series works:

$$
\begin{equation*}
\frac{1}{1-\alpha x}=1+\alpha x+\alpha^{2} x^{2}+\alpha^{3} x^{3}+\ldots \tag{6}
\end{equation*}
$$

Plug (6) into (4) along with the analogous series for $1 /(1-\beta x)$, and then the cofficient of x^{k} is computed by the right hand side of (5).

For instance, consider the Fibonacci example. The roots of $1-x-x^{2}$ are $r_{1}=(\sqrt{5}-1) / 2$ and $r_{2}=(-\sqrt{5}-1) / 2$. The inverses of these are $1 / r_{2}=\alpha=(\sqrt{5}+1) / 2$ and $1 / r_{1}=\beta=(-\sqrt{5}+1) / 2$. So we get

$$
\begin{equation*}
a_{k}=A((\sqrt{5}+1) / 2)^{k}+B((-\sqrt{5}+1) / 2)^{k} . \tag{7}
\end{equation*}
$$

We just have to solve for A and B. We can use the first two values of k for that:

$$
\begin{aligned}
& 1=A+B \\
& 1=A(\sqrt{5}+1) / 2+B(-\sqrt{5}+1) / 2)
\end{aligned}
$$

It's somewhat painful to solve for A and B, but if we do we find

$$
A=(5+\sqrt{5}) / 10, \quad B=(5-\sqrt{5}) / 10 .
$$

Here's an application of an expression like (7). Since $|(-\sqrt{5}+1) / 2|<1$ and $(\sqrt{5}+1) / 2)>1$, it means that a_{k} must be very close to $A((\sqrt{5}+1) / 2)^{k}$ for k large (because the other term in (7) will be close to 0). For example, when $k=20$, the Fibonacci number is 10946, and

$$
A((\sqrt{5}+1) / 2)^{100}=10945.999981728 \ldots
$$

The relative error is 10^{-9}. If $k=1000$ the relative error between the actual Fibonacci number and this approximation is 10^{-419}, an unimaginably small number. How small is unimaginably small? The Planck length, which supposedly is the distance at which quantum effects begin to dominate in spacetime, is about $10^{-35} \mathrm{~m}$. The uncertainty principle of quantum mechanics means that we cannot measure distances smaller than this. Compared to our relative error, this number is gigantic.

