LINEAR RECURRENCES AND RATIONAL GENERATING
FUNCTIONS

Let f(z) = >4 apz® be a generating function. We say the sequence

ag,ai, ... satisfies a linear recurrence relation of order n if there exist con-
stants cq,...,c, such that
(1) ap = C10p—1+ -+ + CnQg—n

for all £ > N, where N is some fixed number > n. The basic example is
the Fibonacci sequence 1,1,2,3,5,8,13, ..., which is defined by ag = a1 = 1
and ay = ax—1 + ag—2 for k > 2.

We have the following fact about the generating functions of sequences
defined by recurrences:

Theorem 1. Suppose the coefficients of f(x) = arz® satisfy (1) for all
k> N, where N > n is given. Suppose further that the values a; for i < N
are known. Then

@) fz) = Pla)

1—cix —coz? — - — cpa™’

where P(x) = Ag + A1z + ... AN 12V~ is a polynomial of degree at most
N —1.

The coefficients of the numerator P(x) are determined by the a;, i <
N, but in general A; # a;. A function of the form polynomial divided
by polynomial is called a rational function. Sometimes people summarize
the conclusion of the theorem by saying that the generating function of a
sequence defined by a linear recurrence is a rational function.

Consider the Fibonacci example. According to the theorem the generating
function for them can be written as
(3) le + Ay

—r—z

2 =
We can find the A; by multiplying both sides of (3) by 1 — 2 — 2. There is
a lot of cancellation (that’s in fact the whole point of how this works), and
we find

Ag+ Az =(1—-z—2*)1+x+222 +32° + 521 + 825 +--)
=1+0z+02%+02 +--- |

which means Ay = 1 and A; = 0. Thus
1

1—x— 22

14+ 242224323 + 52 +82° + -+

=1+x+22%+32°+52* + 8% + - --

Here is how we can use an expression like (2) to get an explicit formula for
the ay. For simplicity we only discuss 2nd order recurrences with N = 2 (the
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general case is similar). Suppose one can break apart the rational function
into “partial fractions”:

(4)

Here A, B are constants, and «, 8 are the inverses of the roots of 1 — cix —
cow?. (This is slightly different from the partial fractions one usually sees
in calculus, because we want the denominators to look like 1 — ax, not
T — «a ...this reflects the fact that we use the inverses of the roots of the

denominator of the left hand side.) Then one can conclude that
(5) ar, = Ao 4 BB

Why is (5) true? Because of the way the geometric series works:
1
(6)

1 —oazx
Plug (6) into (4) along with the analogous series for 1/(1 — ), and then
the cofficient of 2* is computed by the right hand side of (5).
For instance, consider the Fibonacci example. The roots of 1 —z — x
are 11 = (v/5 —1)/2 and ro = (—/5 — 1)/2. The inverses of these are
1/ro=a=(V/5+1)/2and 1/r; = 8= (—v/5+1)/2. So we get

(7) ar, = A((V5+1)/2)F + B((—V5 +1)/2).

We just have to solve for A and B. We can use the first two values of k for
that:

P(z) A B

l—ciz—c2?2 l—oax 1—pz

=l+4+ar+a?2?+a2®+ ...

2

1=A+B
1=AW5+1)/2+ B(—V5+1)/2)
It’s somewhat painful to solve for A and B, but if we do we find
A= (5++5)/10, B=(5-+5)/10.

Here’s an application of an expression like (7). Since |(—v/5+1)/2| < 1
and (v/5+1)/2) > 1, it means that a; must be very close to A((v/5+1)/2)k
for k large (because the other term in (7) will be close to 0). For example,
when k£ = 20, the Fibonacci number is 10946, and

A((V5 +1)/2)'% = 10945.999981728 . . .

The relative error is 1072, If k& = 1000 the relative error between the ac-
tual Fibonacci number and this approximation is 1079, an unimaginably
small number. How small is unimaginably small? The Planck length, which
supposedly is the distance at which quantum effects begin to dominate in
spacetime, is about 1073®> m. The uncertainty principle of quantum mechan-
ics means that we cannot measure distances smaller than this. Compared
to our relative error, this number is gigantic.



