
MATH 455 EXAM I

This exam is worth 100 points, with each problem worth 20 points. There are problems on both

sides of the page. Please complete Problem 1 and then any four of the remaining problems. Unless
indicated, you must justify your answer to receive credit for a solution; correct answers alone are
not necessarily sufficient for credit.

When submitting your exam, please indicate which problems (including Problem 1) you want
graded by writing them in the upper right corner on the cover of your exam booklet. You must
select exactly five problems; any unselected problems will not be graded, and if you select more than
five only the first five (in numerical order) will be graded.

(1) Please classify the following statements as True or False. Write out the word completely; do
not simply write T or F. There is no partial credit for this problem, and it is not necessary
to show your work for this problem.
(a) (4 pts) Every graph has at least one spanning tree.
(b) (4 pts) A walk in a graph is a trail with no repeated vertices.
(c) (4 pts) A tree is a graph with no cycle.
(d) (4 pts) The number of labelled trees of order n is nn−2.
(e) (4 pts) Every connected graph has at least one cut vertex

(2) Draw pictures of the trees with the following Prüfer codes:
(a) (5 pts) 1, 2, 3, 4, 5, 6
(b) (5 pts) 1, 2, 3, 3, 2, 1
(c) (5 pts) 4, 4, 4, 4, 4, 4
(d) (5 pts) 1, 2, 1, 2, 1, 2

(3) (20 pts) Let D be the graph in Figure 1. Compute the number of spanning trees for D.
(4) Let E be the graph in Figure 2.

(a) (10 pts) Explain how we know that E is Eulerian.
(b) (10 pts) Give two different Eulerian circuits for E (you can give your circuits by giving

the sequence of vertex labels).
(5) Let F be the graph in Figure 3. Suppose the vertical edges have weight a, the diagonal

edges have weight b, and the horizonal edges have weight c.
(a) (7 pts) Find a minimal weight spanning tree if 0 < a < b < c.
(b) (7 pts) Find a minimal weight spanning tree if 0 < b < c < a.
(c) (6 pts) Is there any choice of values for a, b, c that would make F have a unique minimal

weight spanning tree? Why or why not?
(6) Let G = K4.

(a) (6 pts) Write the adjacency matrix for G.
(b) (6 pts) Let αk be the number of k-step walks from any vertex to itself, and let βk be

the number of k step walks from any vertex to any other vertex. Compute α1, α2, α3

and β1, β2, β3.
(c) (8 pts) Show |αk − βk| = 1 for any k. (Hint: First note the difference αk − βk is either

±1 depending on the parity of k. Use induction.)
(7) Recall that a graph is called d-regular if every vertex has degree d.
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(a) (7 pts) Show that there is no 3-regular graph with an odd number of vertices.
(b) (6 pts) In contrast to (7a), there exists a 3-regular graph with 2n vertices for any n ≥ 2.

Draw 3-regular graphs with 4, 6, and 8 vertices.
(c) (7 pts) Show that for any d, there is no d-regular graph that has d vertices.
(d) (Extra credit 5 pts — not part of the 100 pts) Explain how to construct a 3-regular

graph with 2n vertices for all n ≥ 2.
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