MATH 455 PROBLEM SET HINTS

PROBLEM SET 7

These are (usually) not complete solutions for the problems, but are intended to give you the basic ideas needed for a solution. If the basics of a problem are covered in class, either through working it out or doing a similar example, then we omit it here. Complete solutions typically involve more writing than is given here.

§2.5.

(1) $50-30-26-12+9+23+3-1=16$
(3) The properties are "has meat", "has vegetable", "is fried". You're given the sizes of all the subsets in the theorem except for one ("has vegetable").
(6) Number the suits $1,2,3,4$. Let $a_{i}, i=1, \ldots, 4$ be the property that a given hand contains no cards of suit i. We have $N_{i}=\binom{39}{5}, N_{i j}=\binom{26}{5}$, and $N_{i j k}=\binom{13}{5}$. Thus the number with at least one from each suit is $\binom{52}{5}-4\binom{39}{5}+6\binom{26}{5}-4\binom{13}{5}=685464$.
(10) For these, do inclusion/exclusion over the set of edges. In other words, let E be the set of edges of the graph. For any subset $A \subseteq E$, let $c(A)$ be the number of connected components of the subgraph with edge set A. For instance, $c(\emptyset)$ is the number of vertices. The number of colorings with t colors that are the same along the subgraph A is then $t^{c(A)}$. So the chromatic polynomial is

$$
C_{G}(t)=\sum_{A \subseteq E}(-1)^{|E-A|} t^{c(A)}
$$

(a) $t^{4}-4 t^{3}+5 t^{2}-2 t$
(b) $t^{5}-6 t^{4}+15 t^{3}-17 t^{2}+7 t$
(11) Not really. According to the last bit of 2.5 , the probability for 12 is 0.36787944132128159905937683715461493239 , and that for 120 is 0.36787944117144232159552377016146086745 . The difference is about 10^{-10}.

