
MATH 455 PROBLEM SET HINTS

PROBLEM SET III

These are (usually) not complete solutions for the problems, but are in-
tended to give you the basic ideas needed for a solution. If the basics of a
problem are covered in class, either through working it out or doing a similar
example, then we omit it here. Complete solutions typically involve more
writing than is given here.

§1.3.3.
(2) Argue that if it has more than one, you can use the two spanning

trees to make a cycle. For instance, let T be one spanning tree and
T ′ be another. There is an edge in T ′ that’s not in T . What happens
if you add this edge to T? (Compare with the next problem.)

(4) If e is not in some spanning tree T , then adding e to T makes a cycle
in G, and thus e couldn’t have been a bridge.

(5) In both cases the spanning tree constructed by the algorithm is
unique. For the graph on the right it’s clear, since all the weights
are distinct (so there are no choices in the algorithm). For the graph
on the left, there are choices made in the algorithm, but they all get
made as the spanning tree is built.

(6) Follow the description and see what edges are added in what order.

§1.3.4.
(1) The labels of the leaves are never written down because leaves are

always simply deleted during the encoding. Now let v be a vertex
and suppose it isn’t a leaf. If a vertex has degree d, then there are d
vertices connected to it. If v survives to the end (it’s one of the last
two left), then d−1 of its neighbors must have been deleted and so it
shows up d−1 times. On the other hand, if it doesn’t survive to the
end, then it will be deleted, but only after d− 1 of its neighbors get
deleted. So again it shows up d− 1 times. (Note that this argument
also applies to the leaves, since they have degree 1.)

(2) (a) 221314415. (b) 5843339.
(3) See Figure 1.
(4) K1,n, i.e. stars.
(5) Path graphs.
(6) This is a challenging problem. Here is one solution. Let A be the

number of spanning trees of Kn containing a fixed edge. We need
to compute nn−2 −A. Any spanning tree t determines a function ft
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Figure 1.

on the edges E of Kn: if e ∈ t, then ft(e) = 1, otherwise ft(e) = 0.
Let T be the set of spanning trees of Kn. Then we have∑

e∈E

∑
t∈T

ft(e) = A · n(n− 1)/2,

since there are n(n−1)/2 edges in E and since each edge appears in
the same number of spanning trees. Now we apply a very powerful
technique: we swap the order of summation.1 This gives∑

t∈T

∑
e∈E

ft(e) = A · n(n− 1)/2.

The total sum hasn’t changed, of course, but the point is now we
can do the inner sum: any tree in T has n − 1 edges, and when we
sum ft over the edges all we do is count the edges in t. Therefore∑

t∈T

∑
e∈E

ft(e) =
∑
t∈T

(n− 1) = A · n(n− 1)/2.

The sum in the middle is now simply |T | · (n− 1) = nn−2 · (n− 1),
and we can solve for A.

(7) Do row/column operations to simplify the determinant computation.

1This is the discrete analogue of changing the order of integration in Math 233.


