MATH 455 PROBLEM SET HINTS

PROBLEM SET I

These are (usually) not complete solutions for the problems, but are intended to give you the basic ideas needed for a solution. If the basics of a problem are covered in class, either through working it out or doing a similar example, then we omit it here. Complete solutions typically involve more writing than is given here.

§1.1.1.

(1) Draw K_{10} with the vertices in a circle and then erase the diagonals that go directly across.
(2) Make a vertex for each person, and draw $A \rightarrow B$ is B is on A 's list.
(3) Draw the graph with the indicated edges, and put a double edge if * appears.

§1.1.2.

(1) The complete graph K_{n} has $n(n-1) / 2$ edges (n choose 2).
(3) (a) Let N_{k} be the number of paths with k steps that start at c and walk away. Then we want $\sum_{k=0}^{4} N_{k}$. Think of counting sequences of distinct vertices. For instance, to get a walk of length 4 , we need to write something like $c x y z w$, where x, y, z, w are some ordering of $\{a, b, d, e\}$. There are $4 \cdot 3 \cdot 2 \cdot 1=24$ such choices, so $N_{4}=24$. Similarly we find $N_{0}=1, N_{1}=4, N_{2}=12$, and $N_{3}=24$. So the total is 65 . Note that this only counts the walks that have c at one end (which is how I interpreted it). If we want the walks that have c at either end, then the answer is $2 \cdot 65+1=131$ (why?). Either answer was accepted.
(b) This is very similar.
(c) 10 .
(d) This is the same as the maximum length circuit in K_{4}. This is 4.
(9) The max will when the graph has two connected components, each of which are complete graphs. A little experimentation shows that we will want one component to be K_{1} and the other to be K_{n-1}.
(11) If e is part of a cycle, it cannot be a bridge (for after you delete e you can still get make a walk from the endpoints of e to each other). Conversely, if e is not part of a cycle, it must be a bridge, since after deleting e there will be no path between its endpoints.

§1.1.3.

(2) Discussed in class.
(3) It is not, since $K_{4,4}$ contains no copy of K_{3} as a subgraph, and K_{3} is a subgraph of K_{4} (cf. Thm 1.3)
(4) It is not, since it would have to contain all vertices of K_{4}. But the induced graph of the full set of vertices is the original graph K_{4}, which is not P_{4}.

§1.2.1.

(1) (Check me!) The radius is 3 , the diameter is 6 , and the center is the central vertex.
(2) I'll just do a few. To get these just do a bunch of examples and guess the connection between r, d and k. (r is the radius, d is the diameter.)
(1) $P_{2 k}: r=k, d=2 k-1$.
(2) $C_{2 k}: r=d=k$.
(3) $K_{n}: r=d=1$.
(5) The key is the triangle inequality: if x is any vertex, then $d(x, u) \leq$ $d(x, v)+1$ and $d(x, v) \leq d(x, u)+1$. So suppose $\operatorname{ecc}(u)=a$ and $\operatorname{ecc}(v)=a+k, k \geq 2$. Let x be a vertex with $d(x, v)=a+k$. Then $d(x, v) \leq d(x, u)+1$, but $d(x, u)$ must be at most a, since $\operatorname{ecc}(u)=a$. This gives $a+k \leq a+1$, a contradiction.
§1.2.2.
(1) See the examples in class.
(2) You must count 3 -step walks. We did a similar example in class.
(3) Any 2 -step walk from a vertex v to itself is constructed by passing from v to a neighbor and back.

