LIE GROUPS PROBLEMS

Please complete 20 of these problems. You can hand them in at any time. The problems cover a lot of different areas of the course; thus some are more geometric, some are more algebraic, etc. You can pick the problems that sound most appealing to you.

Problems last modified: Fri Mar 28 11:10:24 EDT 2014.
(1) Hall, §1.9, 7.
(2) Hall, §1.9, 8.
(3) Hall, §1.9, 13.
(4) Hall, $\S 2.10,10$.
(5) Hall, §2.10, 15.
(6) Hall, §2.10, 17.
(7) Hall, §2.10, 19.
(8) Hall, $\S 3.9,1$.
(9) Hall, §3.9, 9.
(10) Hall, §4.11, 15.
(11) Hall, §4.11, 16.
(12) This problem has a companion, Problem (16). Let \mathfrak{g} be the Lie algebra $\mathfrak{s l}_{n}(\mathbb{R})$, and for any i, j let $E_{i j}$ be the elementary matrix with 1 in position i, j and 0 everywhere else.
(a) Let $\mathfrak{h} \subset \mathfrak{g}$ be the subset of diagonal matrices. Show that \mathfrak{h} is an abelian Lie subalgebra.
(b) Assume $i<j$ and $k<l$, and compute $\left[E_{i j}, E_{k l}\right]$.
(c) Fix $i<j$ and compute the subalgebra of \mathfrak{g} generated by \mathfrak{h} and $E_{i j}$ (including how the brackets work).
(d) Fix $i<j$ and $k<l$ and compute the subalgebra of \mathfrak{g} generated by \mathfrak{h} and $E_{i j}, E_{k l}$.
(13) (a) Let $\mathrm{O}_{2 n}(\mathbb{C})$ be defined using the symmetric bilinear form $\langle x, y\rangle=$ $\sum_{i=1}^{2 n} x_{i} y_{2 n+1-i}$, and suppose $X=\left(X_{i j}\right) \in \mathfrak{g l}_{2 n}(\mathbb{C})$. Compute the conditions on the $X_{i j}$ that imply $X \in \mathfrak{o}_{2 n}(\mathbb{C})$.
(b) Do the same for $\mathrm{O}_{2 n+1}(\mathbb{C})$ using the form $\langle x, y\rangle=x_{2 n+1} y_{2 n+1}+$ $\sum_{i=1}^{2 n} x_{i} y_{2 n+1-i}$.
(14) Let $\mathrm{Sp}_{2 n}(\mathbb{C})$ be defined using the antisymmetric bilinear form $\langle x, y\rangle=$ $\sum_{i=1}^{n} x_{i} y_{2 n+1-i}-x_{2 n+1-i} y_{i}$, and suppose $X=\left(X_{i j}\right) \in \mathfrak{g l}_{2 n}(\mathbb{C})$. Compute the conditions on the $X_{i j}$ that imply $X \in \mathfrak{s p}_{2 n}(\mathbb{C})$. (If you want to use a different nondegenerate antisymmetric bilinear form that's OK. One advantage to this one is that the answer exhibits some similarity with the even orthogonal case (Problem (13b)).)
(15) Using Problems (13)-(14), compute the dimensions (over $\mathbb{C})$ of $\mathfrak{o}_{2 n}(\mathbb{C})$, $\mathfrak{o}_{2 n+1}(\mathbb{C})$, and $\mathfrak{s p}_{2 n}(\mathbb{C})$.
(16) In this problem you will study the structure of the Lie algebra $\mathfrak{s l}_{n}(\mathbb{C})$. This is mainly a matter of properly interpreting the computations you did in Problem (12). We will use the previous notation.
(a) Show that each $E_{i j}, i \neq j$, spans a root space for \mathfrak{h}.
(b) Let $\varepsilon_{k}: \mathfrak{h} \rightarrow \mathbb{C}$ be the linear form such that $\varepsilon_{k}\left(\operatorname{Diag}\left(h_{1}, \ldots, h_{n}\right)\right)=$ h_{k}. Compute the root for the root space $\mathbb{C} E_{i j}$ in terms of these linear forms.
(c) Let Φ be the set of roots. What is the cardinality of Φ ? Verify that we have a decomposition

$$
\mathfrak{s l}_{n}(\mathbb{C})=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

(d) Verify that $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]$ is (i) $\mathfrak{g}_{\alpha+\beta}$, (ii) 0 , or (iii) a subspace of \mathfrak{h}, depending on whether (i) $\alpha+\beta \in \Phi$, (ii) $\alpha+\beta \notin \Phi$ and $\beta \neq-\alpha$, or (iii) $\alpha+\beta=0$.
(17) In this problem we investigate the geometry of the roots for $\mathfrak{s l}_{n}(\mathbb{C})$. The set of roots Φ is called the root system of type A_{n-1}.
(a) Using the forms ε_{i} from the previous problem, we have represented Φ as a subset of \mathbb{C}^{n}. Explain why Φ is actually a subset of the real subspace $V=\mathbb{R} \varepsilon_{1} \oplus \cdots \oplus \mathbb{R} \varepsilon_{n} \subset \mathbb{C}^{n}$.
(b) In fact more is true: the real linear subspace spanned by Φ in \mathbb{C}^{n} is a hyperplane $W \subset V$. Why? This means we can draw the root system for $\mathfrak{s l}_{n}(\mathbb{C})$ in \mathbb{R}^{n-1}. (This is also why the subscript for the A is $n-1$, not n.) Show how A_{1} sits inside \mathbb{R}^{2}, and A_{2} sits inside \mathbb{R}^{3}.
(c) The standard euclidean dot product on \mathbb{R}^{n} allows us to talk about the lengths and angles between vectors in A_{n-1}. Verify that with this inner product the 6 roots of A_{2} form the vertices of a regular hexagon.
(d) Draw a picture of the root system A_{3} in \mathbb{R}^{3} with the correct angles between root vectors. (Hint: there are several sub root systems of type A_{2} that correspond to different copies of $\mathfrak{s l}_{3}(\mathbb{C})$ inside $\mathfrak{s l}_{4}(\mathbb{C})$. These are regular hexagons. Every root is contained in 2 of these hexagons. It helps to think in terms of these hexagons. Also some pairs of roots are perpendicular.)
(18) (a) Prove that \mathfrak{b} (upper triangular matrices in $\mathfrak{g l}_{n}(\mathbb{C})$) is a solvable Lie algebra.
(b) Prove that \mathfrak{u} (strictly upper triangular matrices in $\mathfrak{g l}_{n}(\mathbb{C})$) is a nilpotent Lie algebra.
(a) Compute the Killing form on $\mathfrak{s l}_{n}(\mathbb{C})$. Verify that $\mathfrak{s l}_{n}(\mathbb{C})$ is semisimple.
(b) Compute the Killing form on $\mathfrak{g l}_{n}(\mathbb{C})$. Verify that $\mathfrak{g l}_{n}(\mathbb{C})$ is not semisimple.
(c) Compute the Killing form on \mathfrak{b} (see problem (18a)). Is \mathfrak{b} semisimple?
(20) Let $\alpha, \beta \in \Phi$, where $\mathfrak{g}=\mathfrak{h} \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$. Check that if $X \in \mathfrak{g}_{\alpha}$ and $Y \in \mathfrak{g}_{\beta}$, then either $[X, Y] \in \mathfrak{g}_{\alpha+\beta}$ or $[X, Y]=0$.
(21) Prove that if $\alpha+\beta \neq 0$, then \mathfrak{g}_{α} is orthogonal to \mathfrak{g}_{β} with respect to the Killing form.
(22) Let $\alpha, \beta \in V$ be roots. Recall that $2\langle\beta, \alpha\rangle /\langle\alpha, \alpha\rangle$ is an integer, where \langle,$\rangle is the inner product on V$ induced from the Killing form. Classify what the possibilities are for the angle θ between α, β and for the ratio of the length of β to that of α. (Hint: first show that $4 \cos ^{2}(\theta)$ is an integer.)
(23) Let $\mathfrak{g}=\mathfrak{s p}_{4}(\mathbb{C})$. Let \mathfrak{h} be the Cartan subalgebra of diagonal matrices (we use the "off-diagonal" version of the symplectic pairing). Let $e_{i} \in \mathfrak{h}^{*}(i=1,2)$ be the linear form that takes $\operatorname{Diag}\left(a_{1}, a_{2},-a_{2},-a_{1}\right)$ to a_{i}.
(a) Show that the roots of \mathfrak{g} are $\pm 2 e_{1}, \pm 2 e_{2}, \pm\left(e_{1}+e_{2}\right), \pm\left(e_{1}-e_{2}\right)$ by finding the root spaces in \mathfrak{g}. (Hint: try elementary matrices or matrices that are very close to elementary.)
(b) Generalize this to $\mathfrak{s p}_{2 n}(\mathbb{C})$.
(24) Suppose \mathfrak{g} is semisimple, \mathfrak{h} is a Cartan subalgebra, Φ is the set of roots, and B is the Killing form. Show that for $H, H^{\prime} \in \mathfrak{h}$, we have

$$
B\left(H, H^{\prime}\right)=\sum_{\alpha \in \Phi} \alpha(H) \alpha\left(H^{\prime}\right) .
$$

(25) Let V be the real span of the roots Φ in \mathfrak{h}^{*} and \langle,$\rangle the inner$ product on V induced by the Killing form. For any $\alpha \in \Phi$, let α^{\vee} be the corresponding coroot. Prove that the linear map

$$
s_{\alpha}(x)=x-\left\langle x, \alpha^{\vee}\right\rangle \alpha
$$

is an orthogonal reflection on V. That is, s_{α} takes α to $-\alpha$, fixes the hyperplane perpendicular to α, and is orthogonal with respect to \langle,$\rangle .$
(26) Draw convincing pictures of all the irreducible root systems of ranks ≤ 4.
(27) This exercise realizes the exceptional Lie algebra $\mathfrak{g}_{2}(\mathbb{C})$ as a subalgebra of $\mathfrak{s o}_{8}(\mathbb{C})$. A computer is probably going to be helpful for this, unless you really like multiplying big matrices together. Let $E_{i j}$ be the elementary matrix with a 1 in row i and column j and 0 s everywhere else. For a matrix A let A° be the transpose of A about the opposite diagonal. For example,

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad A^{\circ}=\left(\begin{array}{ll}
d & b \\
c & a
\end{array}\right) .
$$

Put $A^{*}=A-A^{\circ}$.
(a) Draw a picture of the root system for \mathfrak{g}_{2} with the simple roots labelled. (Make α_{2} the long simple root.)
(b) Write the positive roots as linear combinations of the simple roots.
(c) (All the matrices in what follows are 8×8.) Let $X_{\alpha_{1}}=E_{12}^{*}+$ $E_{34}^{*}+E_{35}^{*}, X_{\alpha_{2}}=E_{23}^{*}, H_{\alpha_{1}}=\operatorname{Diag}(1,-1,2,0,0,0,0,0)^{*}, H_{\alpha_{2}}=$ $\operatorname{Diag}(0,1,-1,0,0,0,0,0)^{*}$. Show that the $X_{\alpha_{i}}$ generate the root spaces $\mathfrak{g}_{\alpha_{i}}$ by computing $\operatorname{ad}_{H_{\alpha_{1}}}, \operatorname{ad}_{H_{\alpha_{2}}}$ on them (ooh, triple subscript!).
(d) Compute the appropriate brackets of $X_{\alpha_{1}}, X_{\alpha_{2}}$ as indicated by the root system, and show that the $H_{\alpha_{i}}$ act on these vectors as expected.
(28) (a) Let \mathfrak{g} be the Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$. Let V be the standard representation of \mathfrak{g}. Compute the multiplicity of the trivial representation in $V^{\otimes m}:=V \otimes \cdots \otimes V$ (m factors) for $m \leq 10$.
(b) Make a conjecture about these multiplicities and prove your conjecture. (They are related to a famous sequence in mathematics.)
(c) Now consider the same computation but with \mathfrak{g} replaced by one of the exceptional algebras $\mathfrak{g}_{2}, \mathfrak{f}_{4}$, and \mathfrak{e}_{8}, and with V replaced by the appropriate adjoint representation. Compute a table of multiplicities of the trivial representation for small values of m. (You are absolutely going to need to use a computer for this; I recommend LiE or sage. Or look for tables online.) Do you notice anything? (Deligne did.)
(29) Let \mathfrak{g} be the Lie algebra $\mathfrak{s l}_{n+1}(\mathbb{C})$. Let V be \mathbb{C}^{n+1} with the standard action of $\mathfrak{g}: X \cdot v=X v$ (matrix multiplication). Let $V_{k}=\Lambda^{k}(V)$.
(a) Explain how \mathfrak{g} acts on elements of V_{k}.
(b) Show that V_{k} is an irreducible representation of highest weight ϖ_{k}, where $\left\{\varpi_{1}, \ldots, \varpi_{n}\right\}$ is the set of fundamental weights. (Hint: compute all the weights in V_{k} and show that a unique one is dominant and is ϖ_{k}. Then argue that this implies the representation is irreducible.)

