Please complete 20 of these problems. You can hand them in at any time.

The problems cover a lot of different areas of the course; thus some are more geometric, some are more algebraic, etc. You can pick the problems that sound most appealing to you.

Problems last modified: Fri Mar 28 11:10:24 EDT 2014.

- (1) Hall, $\S1.9$, 7.
- (2) Hall, $\S1.9$, 8.
- (3) Hall, $\S1.9$, 13.
- (4) Hall, $\S2.10$, 10.
- (5) Hall, $\S2.10$, 15.
- (6) Hall, §2.10, 17.
- (7) Hall, §2.10, 19.
- (8) Hall, §3.9, 1.
- (9) Hall, $\S3.9$, 9.
- (10) Hall, §4.11, 15.
- (11) Hall, §4.11, 16.

(12) This problem has a companion, Problem (16). Let \mathfrak{g} be the Lie algebra $\mathfrak{sl}_n(\mathbb{R})$, and for any i, j let E_{ij} be the elementary matrix with 1 in position i, j and 0 everywhere else.

- (a) Let $\mathfrak{h} \subset \mathfrak{g}$ be the subset of diagonal matrices. Show that \mathfrak{h} is an abelian Lie subalgebra.
- (b) Assume i < j and k < l, and compute $[E_{ij}, E_{kl}]$.
- (c) Fix i < j and compute the subalgebra of \mathfrak{g} generated by \mathfrak{h} and E_{ij} (including how the brackets work).
- (d) Fix i < j and k < l and compute the subalgebra of \mathfrak{g} generated by \mathfrak{h} and E_{ij}, E_{kl} .
- (13) (a) Let $O_{2n}(\mathbb{C})$ be defined using the symmetric bilinear form $\langle x, y \rangle = \sum_{i=1}^{2n} x_i y_{2n+1-i}$, and suppose $X = (X_{ij}) \in \mathfrak{gl}_{2n}(\mathbb{C})$. Compute the conditions on the X_{ij} that imply $X \in \mathfrak{o}_{2n}(\mathbb{C})$.
 - (b) Do the same for $O_{2n+1}(\tilde{\mathbb{C}})$ using the form $\langle x, y \rangle = x_{2n+1}y_{2n+1} + \sum_{i=1}^{2n} x_i y_{2n+1-i}$.
- (14) Let $\operatorname{Sp}_{2n}(\mathbb{C})$ be defined using the antisymmetric bilinear form $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_{2n+1-i} x_{2n+1-i} y_i$, and suppose $X = (X_{ij}) \in \mathfrak{gl}_{2n}(\mathbb{C})$. Compute the conditions on the X_{ij} that imply $X \in \mathfrak{sp}_{2n}(\mathbb{C})$. (If you want to use a different nondegenerate antisymmetric bilinear form that's OK. One advantage to this one is that the answer exhibits some similarity with the even orthogonal case (Problem (13b)).)
- (15) Using Problems (13)–(14), compute the dimensions (over \mathbb{C}) of $\mathfrak{o}_{2n}(\mathbb{C})$, $\mathfrak{o}_{2n+1}(\mathbb{C})$, and $\mathfrak{sp}_{2n}(\mathbb{C})$.

- (16) In this problem you will study the structure of the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$. This is mainly a matter of properly interpreting the computations you did in Problem (12). We will use the previous notation.
 - (a) Show that each E_{ij} , $i \neq j$, spans a root space for \mathfrak{h} .
 - (b) Let $\varepsilon_k \colon \mathfrak{h} \to \mathbb{C}$ be the linear form such that $\varepsilon_k(\text{Diag}(h_1, \ldots, h_n)) = h_k$. Compute the root for the root space $\mathbb{C}E_{ij}$ in terms of these linear forms.
 - (c) Let Φ be the set of roots. What is the cardinality of Φ ? Verify that we have a decomposition

$$\mathfrak{sl}_n(\mathbb{C}) = \mathfrak{h} \oplus igoplus_{lpha \in \Phi} \mathfrak{g}_lpha.$$

- (d) Verify that $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]$ is (i) $\mathfrak{g}_{\alpha+\beta}$, (ii) 0, or (iii) a subspace of \mathfrak{h} , depending on whether (i) $\alpha+\beta\in\Phi$, (ii) $\alpha+\beta\notin\Phi$ and $\beta\neq-\alpha$, or (iii) $\alpha+\beta=0$.
- (17) In this problem we investigate the geometry of the roots for $\mathfrak{sl}_n(\mathbb{C})$. The set of roots Φ is called the *root system of type* A_{n-1} .
 - (a) Using the forms ε_i from the previous problem, we have represented Φ as a subset of \mathbb{C}^n . Explain why Φ is actually a subset of the *real* subspace $V = \mathbb{R}\varepsilon_1 \oplus \cdots \oplus \mathbb{R}\varepsilon_n \subset \mathbb{C}^n$.
 - (b) In fact more is true: the real linear subspace spanned by Φ in \mathbb{C}^n is a hyperplane $W \subset V$. Why? This means we can draw the root system for $\mathfrak{sl}_n(\mathbb{C})$ in \mathbb{R}^{n-1} . (This is also why the subscript for the A is n-1, not n.) Show how A_1 sits inside \mathbb{R}^2 , and A_2 sits inside \mathbb{R}^3 .
 - (c) The standard euclidean dot product on \mathbb{R}^n allows us to talk about the lengths and angles between vectors in A_{n-1} . Verify that with this inner product the 6 roots of A_2 form the vertices of a regular hexagon.
 - (d) Draw a picture of the root system A_3 in \mathbb{R}^3 with the correct angles between root vectors. (Hint: there are several sub root systems of type A_2 that correspond to different copies of $\mathfrak{sl}_3(\mathbb{C})$ inside $\mathfrak{sl}_4(\mathbb{C})$. These are regular hexagons. Every root is contained in 2 of these hexagons. It helps to think in terms of these hexagons. Also some pairs of roots are perpendicular.)
- (18) (a) Prove that \mathfrak{b} (upper triangular matrices in $\mathfrak{gl}_n(\mathbb{C})$) is a solvable Lie algebra.
 - (b) Prove that \mathfrak{u} (strictly upper triangular matrices in $\mathfrak{gl}_n(\mathbb{C}))$ is a nilpotent Lie algebra.
- (19) (a) Compute the Killing form on $\mathfrak{sl}_n(\mathbb{C})$. Verify that $\mathfrak{sl}_n(\mathbb{C})$ is semisimple.
 - (b) Compute the Killing form on $\mathfrak{gl}_n(\mathbb{C}).$ Verify that $\mathfrak{gl}_n(\mathbb{C})$ is not semisimple.
 - (c) Compute the Killing form on \mathfrak{b} (see problem (18a)). Is \mathfrak{b} semisimple?

2

- (20) Let $\alpha, \beta \in \Phi$, where $\mathfrak{g} = \mathfrak{h} \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$. Check that if $X \in \mathfrak{g}_{\alpha}$ and $Y \in \mathfrak{g}_{\beta}$, then either $[X, Y] \in \mathfrak{g}_{\alpha+\beta}$ or [X, Y] = 0.
- (21) Prove that if $\alpha + \beta \neq 0$, then \mathfrak{g}_{α} is orthogonal to \mathfrak{g}_{β} with respect to the Killing form.
- (22) Let $\alpha, \beta \in V$ be roots. Recall that $2\langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle$ is an integer, where \langle , \rangle is the inner product on V induced from the Killing form. Classify what the possibilities are for the angle θ between α, β and for the ratio of the length of β to that of α . (Hint: first show that $4\cos^2(\theta)$ is an integer.)
- (23) Let $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$. Let \mathfrak{h} be the Cartan subalgebra of diagonal matrices (we use the "off-diagonal" version of the symplectic pairing). Let $e_i \in \mathfrak{h}^*$ (i = 1, 2) be the linear form that takes $\text{Diag}(a_1, a_2, -a_2, -a_1)$ to a_i .
 - (a) Show that the roots of \mathfrak{g} are $\pm 2e_1, \pm 2e_2, \pm (e_1 + e_2), \pm (e_1 e_2)$ by finding the root spaces in \mathfrak{g} . (Hint: try elementary matrices or matrices that are very close to elementary.)
 - (b) Generalize this to $\mathfrak{sp}_{2n}(\mathbb{C})$.
- (24) Suppose \mathfrak{g} is semisimple, \mathfrak{h} is a Cartan subalgebra, Φ is the set of roots, and B is the Killing form. Show that for $H, H' \in \mathfrak{h}$, we have

$$B(H, H') = \sum_{\alpha \in \Phi} \alpha(H) \alpha(H').$$

(25) Let V be the real span of the roots Φ in \mathfrak{h}^* and \langle , \rangle the inner product on V induced by the Killing form. For any $\alpha \in \Phi$, let α^{\vee} be the corresponding coroot. Prove that the linear map

$$s_{\alpha}(x) = x - \langle x, \alpha^{\vee} \rangle \alpha$$

is an orthogonal reflection on V. That is, s_{α} takes α to $-\alpha$, fixes the hyperplane perpendicular to α , and is orthogonal with respect to \langle , \rangle .

- (26) Draw convincing pictures of all the irreducible root systems of ranks ≤ 4 .
- (27) This exercise realizes the exceptional Lie algebra $\mathfrak{g}_2(\mathbb{C})$ as a subalgebra of $\mathfrak{so}_8(\mathbb{C})$. A computer is probably going to be helpful for this, unless you *really* like multiplying big matrices together. Let E_{ij} be the elementary matrix with a 1 in row *i* and column *j* and 0s everywhere else. For a matrix *A* let A° be the transpose of *A* about the *opposite* diagonal. For example,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A^{\circ} = \begin{pmatrix} d & b \\ c & a \end{pmatrix}.$$

Put $A^* = A - A^\circ$.

- (a) Draw a picture of the root system for \mathfrak{g}_2 with the simple roots labelled. (Make α_2 the long simple root.)
- (b) Write the positive roots as linear combinations of the simple roots.

4

- (c) (All the matrices in what follows are 8×8 .) Let $X_{\alpha_1} = E_{12}^* + E_{34}^* + E_{35}^*$, $X_{\alpha_2} = E_{23}^*$, $H_{\alpha_1} = \text{Diag}(1, -1, 2, 0, 0, 0, 0, 0)^*$, $H_{\alpha_2} = \text{Diag}(0, 1, -1, 0, 0, 0, 0, 0)^*$. Show that the X_{α_i} generate the root spaces \mathfrak{g}_{α_i} by computing $\mathrm{ad}_{H_{\alpha_1}}$, $\mathrm{ad}_{H_{\alpha_2}}$ on them (ooh, triple subscript!).
- (d) Compute the appropriate brackets of X_{α_1} , X_{α_2} as indicated by the root system, and show that the H_{α_i} act on these vectors as expected.
- (28) (a) Let \mathfrak{g} be the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$. Let V be the standard representation of \mathfrak{g} . Compute the multiplicity of the trivial representation in $V^{\otimes m} := V \otimes \cdots \otimes V$ (*m* factors) for $m \leq 10$.
 - (b) Make a conjecture about these multiplicities and prove your conjecture. (They are related to a famous sequence in mathematics.)
 - (c) Now consider the same computation but with \mathfrak{g} replaced by one of the exceptional algebras \mathfrak{g}_2 , \mathfrak{f}_4 , and \mathfrak{e}_8 , and with V replaced by the appropriate adjoint representation. Compute a table of multiplicities of the trivial representation for small values of m. (You are absolutely going to need to use a computer for this; I recommend LiE or sage. Or look for tables online.) Do you notice anything? (Deligne did.)
- (29) Let g be the Lie algebra sl_{n+1}(C). Let V be Cⁿ⁺¹ with the standard action of g: X ⋅ v = Xv (matrix multiplication). Let V_k = ∧^k(V).
 (a) Explain how g acts on elements of V_k.
 - (b) Show that V_k is an irreducible representation of highest weight ϖ_k , where $\{\varpi_1, \ldots, \varpi_n\}$ is the set of fundamental weights. (Hint: compute all the weights in V_k and show that a unique one is dominant and is ϖ_k . Then argue that this implies the representation is irreducible.)