Classification of simple Lie groups

E.B. Dynkin

1. Simple Lie groups were first listed by Killing in 1890. The first com-
plete proof of Killing’s results was given by E. Cartan (1894). Basing on the
paper by H. Weyl (2], van der Waerden proposed in 1933 [1] a new, more
geometric, method of the classification of simple Lie groups. In this note, we
prove that a semisimple Lie group is determined by its system of simple roots
and reduce the problem of listing all simple Lie groups to the following sim-
ple geometric problem: to construct all bases of a n-dimensional Euclidean
vector space such that %ﬂ—,’,? is a non-positive integer for any two distinct

vectors ¢ and b (here (a,b) is the scalar product of a and b).

2. H. Weyl assigns to any semisimple Lie group & with complex pa-~
rameters the system X(®) of its roots that determines & completely. Here
¥ = X(®) is a finite subset of a n-dimensional real Euclidean vector space
R™ satisfying the following conditions:

2(1) IfaeX, then —ac L, but ka ¢  for £ =2,3,...
2 (2) Let a and b be two different roots. If b +ia € 3 for —p < 4 < g, while

b—-(p+1lla¢Zandb+(¢g+1ja ¢ X, thenp—-g= 25:’;:‘ .
2 (3) If two systems X(®,) and X(&,) are similar, i.e., are transformed one

into another by a homothety of R"™, then they coincide.
If, in particular, & is a simple group, then
2 (4) X(®) cannot be split into two orthogonal subsets L; and ¥s.

3. Let us give examples of simple groups and write down their root
systems. These examples were studied in detail by H. Weyi [2].
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Providence, RI, 1962, 328-469,
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A, — the group of linear transformations with determinant 1 of a (n+1)-
dimensional complex vector space L™+,

L(An) = {ep — eq};‘,;'il (p # ¢q; e1,-..,€n+1 is an orthonormal basis of
Rﬂ+1)_

B,, — the group of orthogonal transformations of L27+1,
3(Bn) = {tep, e, & eq};,q=1 {r # q). .

C, — the group of symplectic transformations of I?", i.e. of linear
transformations leaving invariant the differential form
"

Z (mkdzn+k - $n+}cdmk) .
k=1

5(Cn} = {£2¢p, ep L €g}y 0o (P # 9)-

D,, — the group of orthogonal transformations of L2".
E(Dn) = {Zep = eg}p 01 (P # 0).

4. A vector of B™ will be called positive if its first non-zero coordinate
is positive. The subset P of all positive vectors satisfies the following condi-
tions:

4 (1) Suppose a # 0. Then either ¢ € P or —¢ € P, but it is impossible
thate € P and —a € P.
4(2) fac P, be P, A>0, u>0, then Aa+ pbe P.

We will write @ > D whenever a € P, and a < 0 whenever —a € P.

LeMmMA 1. If vectors aj,...,0, are positive and (a;,ax) < 0 (3,k =
P
1,...,p; i # k), then these vectors are linearly independent.

Indeed, suppose that ap, = Y077 Na; = Y’ Ma; + 57 Mas, where ¥
contains the summands with positive coefficients A;, while 37 contains the
summands with negative ones. Set b = 3 \;ja;, ¢ = 3.7 Mja;. Then (b,¢) >
0, ap = b+c, where ¢ < 0 and hence b # 0. We have (ap, b} = (b,b) + (¢, b) >
0, but, on the other hand, (ap, ) = 3>’ Ai(ay, ai) < 0.

5. A positive root a is called simple if it cannot be decomposed into the
sum of two positive roots. Any positive root can be expressed as the sum of
simple roots.

If & is a positive root and a is a simple root, then ¢ — & cannot be a
positive root. Hence, the difference of two simple roots @y and ag is not

a root, and by 2 (2) we get 2;1‘,;“12 = —g < 0. Thus (a;,as) < 0, and,
by Lemma I, the simple roots are linearly independent. Any positive root
decomposes uniquely into the sum of simple ones.

We say that a positive root has order k, if it is the sum of & simple roots.

Let us show that any root ¢ of order k has the form a +b, where g is a simple

root and & a root of order £ — 1. Indeed, if ai,... ,a, is the system of all
simple roots, then c,aq,... ,an are linearly dependent, and, by Lemma I, at
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least one scalar product (¢, a;) is positive. This means that in 2 (2) we have
p # 0, and hence ¢ — a; is a root.

6.

THEOREM 1. A semisimple group & is completely determined by the sys-
tem I1(®) of its simple roots.

To prove this, it is sufficient to construct all roots of the group & starting
from its simple roots. By 2 (1), we can restrict ourselves by constructing
all positive roots. All roots of order 1 are given, since these are the simple
roots. Suppose that we have already constructed all roots of any order < k.
Any root of order k has the form b + a, where b is a root of order £ — 1
and ¢ is a simple root (see no. 5). The formula ¢ = p — %%’f? (see 2 (2))
allows to decide whether the sum of a simple root and a root of order k —1
is a root. Indeed, all roots in the sequence b,b~ a,b — 2a,... are positive of
order < k, and thus p is known by the inductive hypothesis. Therefore we
can construct all the roots of order k.

7. It is not difficult to determine the systems of simple roots for the
groups given in no. 3:

I{An) = {ep~eps1}l;
(Bx) = {ep—ept1, en}?_15
I(Cn) = {ep~eps, Zen}?_l;
(D) = {ep—ept1,n-1+ en}? .
8. A finite subset I' of R" will be called a (IT)-system if it satisfies the
following conditions:
8(1) IfaeTl and beT, a#b, then %% is a non-positive integer.

8 (2) T is linearly independent.
8 (3) T cannot be split into two orthogonal subsets.

By 2 (2}, 2 (4) and no. 5, we have:

THEOREM II. The system II(®) of simple roots of a simple Lie group &
is a (II)-system.

Theorems I and II reduce the problem of classification of simple Lie
groups to that of construction of all possible (II)-systems.

9. Let a and b be two distinct vectors of a (II)-system I'. Then the angle
(a,b) between a and b is equal either 90° or 120° or 135° or 150°.
*" Indeed, since %"—f% and %%2 are integers, we have

2(a,b) 2(a, b)

4 cos? m ==

(a,a) (b,b)
is also an integer m%refore it is equal to 0,1,2 or 3. Thus, the only
possible values of cos (a, b) are 0, —%, —39, —%.
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10. Assign to any element of a given (II)-system I" a vertex of a diagram.
Connect two vertices by a single, double or triple edge if the corresponding
angle is equal to 120°, 135° or 150° respectively. Do not connect any pair
of vertices corresponding to orthogonal vectors. The diagram constructed in
this way will be called the angle diagram of I'. By writing under every vertex
the squared length (a,a) of the corresponding vector a, we get a diagram
that determines I" completely. 1t is called the diagram of the system I'-- -

As an example, we draw the diagrams of the systems I1(As), [I(B,), [I(C,),

I(Dy).

[I(Ap): e—e—e—-—9—0o—2 I(By): €000
2 2 2 2 2 2 1 2 2 2 2 2
II(Cy) : q:b—o— ] II{D,) :—So—o— ]
2 2 2 2 2 2 2 2

Figure 1

11.

LEMMA II. The angle diagram of a (II)-system cannot be one of the
diagrams Iy — Iy, Iy — 11y, IIL} — 1115 (see Figure 2).

I: e+ [[}]: €3+« [[3: o3+

IHh: = Il : c:’——o—~o—< Iis: v‘
ITL : %4—< IIL: ._._P_Z._..4

Il o—o—o——o—é:—o—o

o
h: e
Iy O

FIGURE 2
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Suppose that a (II)-system I" has one of the listed diagrams as its angle
diagram. Let a1, ..., ap be the vectors of I'. Set b; = Aja;, where A; £ 0 (i =
1,...,p). Then

S (b i) = (z bi) (2 b:') >0,

p
i=1 k=1 i=1

We arrive at a contradiction by choosing the lengths of b; in such a way

that s p
30D (b be) <.

i=1 k=1
The diagrams I} — I}, II{ — IT};, III{ — II1} {see Figure 3) show, how
to do this. The values (b;, ;) are indicated there under the corresponding
vertices, while (b;, by) are written over the corresponding edges.

I &t rm: 1 o253,
3 4 1 2 8 9 4 1
-y/2
-3 -3 2
IL: e II,: Ir .
20 e 3 2 4
2
-4/4
Iy 11r: ele=3,6/6,-3,-1
1 4 9 16 9 4 1
-9/0
III;: -1 -3 -6 -10/~-15-12 -4
1 4 9 16 25 36 16 4
1,
Iy
F1GURE 3

Clearly, Lemma II can be strengthened in the following way: the angle
diagram of a (I1)-system does not contain any subdiagram of the form I —
IIIs.
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12.

LEMMA III. The angle diagram of an arbitrary (11)-system is one of the
diagrams I, I1I* — IT2, II1I' — III® (see Figure 4).

Indeed, a diagram that contains a triple edge and is different from I
necessarily contains, as a subdiagram, one of the diagrams I; — I3 of Lemma
IT which is impossible. Similarly, if a diagram contains a double edge, then,
by II) — I14, it coincides with one of the diagrams II' — II?. Finally, for a
diagram without triple or double edges, one excludes any possibility except
of ITTY — ITI® with the help of IITI; — I1Is.

I: — JITY: o—o—o—o_»

II]': e —8—o III2: >_*..._°_.

Ii2: o——o 1173 :

III4: %o—o——é:—o
TII% . .—Q—H—A—.

FIGURE 4

13. Let a and b be two vectors of a (II)-system I" such that (a.":l;) = 120°.
Then

2(a,b) 2(a,b) —
(a,a) (b,0) =4cos? (a,0) = 1.

By 8 (1),
2(a,b) _ 2(a,b) _
(a,@) — (5,0)
Thus (a,a) = (b,b). In the same way we get (a,a) = 2(b,b) whenever

(a,b) = 135°, and (a,a) = 3(b,b) whenever {a,b) = 150° (supposing that
(a,a) > (b,b)). This remark and Lemma III imply the following theorem.

-1.

THEOREM III. An arbitrary Il-system either is similar to one of the sys-
tems I1(A,), TI(Bp),.-II(Cy), II(D,) or is given by one of the diagrams drawn
on Figure 5 (the proportionality foctor A being an arbitrary positive number).
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p
1): 3
(1) /\53)\ ® AA AN XA
A
(2); —a o (4)
XA ZA2M A A A XA A
A
(8):
A A A A A A
FIGURE 5

14. Theorems I, IT, III imply that if a simple Lie group & is contained in
no one of the series A,, Bn, Cpn, Dy, then the diagram of the system II(&)
of its simple roots coincides with one of the diagrams (1) — (5) of Figure 5.
(The factor A is determined uniquely by 2 (3).) Referring to the existence
of five distinct simple groups outside the series A,, B, Crn, Dn, we state
the following final theorem.

THEOREM IV. All simple groups are represented by four infinite series
Ap, Bn, Cn, Dp and five exceptional groups Ga, Fy, Es, E7, Eg. The
systems of simple roots of the five exceptional groups are given, respectively,
by the diagrams (1) - (5) of Figure 5.
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