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Let us introduce the exponential and logarithmic functions by the formal
geries
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and, without assuming the commutativity of z and y, calculate the series
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(the summation over all systems of non-negative integers (p1, q1;. .. ; P, Qk),

connected by the relations p; +¢; > 0 (i = 1,2,...,k)). Gathering together
the terms of this series for which py + q1 + P2+ g2 + - - + P + g = m, we
represent it in the form

@ 8(z,9)= > Pulz,y),
m=1

where Pp,(z,v) is a homogeneous polynomial of degree m in z and y.

An important role in theory of Lie groups is played by the theorem of
Campbell [1] and HausdorfF [2], which claims that every polynomial P (z,y)
can be expressed in terms of z and y by means of a formula involving only
operations of addition, multiplication by rational numbers, and taking com-
mutators (*}. However the explicit formulas have not been known up to

Originally published in Doklady Akad. Na.uk S8SR (N.5.), 57(1947), 323-326. English
translation by A. Kleshchev (1997).

{*) The commutator of two polynomials P(x;,2,...,2,) and @(x), 22, ..., L. ) is the
expression P o = PQ - QP.
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now, which made it difficult to apply the theorem of Campbell and Haus-
dorff. In this note we give a simple expression for the series (1) in terms of
commutators (formula (12)).

Let us pose a more general problem. Let K be an arbitrary field of
characteristic zero and P{z,%2,...,Zn) an arbitrary polynomial over X in
non-commuting indeterminates 1, s, . . ., zn. Our goal is to find answers to
the folowing two questions: o

1. Can P(z1,%2,...,%y) be expressed in terms of z1, 3, . . ., Tn by means
of a formula involving only operations of addition, multiplication by elements
of K, and taking commutators?

2. If such an expression exists then how to find it?

The set R of all non-commuting polynomials in 27, z2,... is the free
associative algebra over K with generators z1,z3,.... Denote by R the
minimal subset of R satisfying the conditions: a) z1,zg,--- € R%; b) if
PeRand Qe RV then AP+ uQ € RY (A, p € K) and PoQ € RO.

Define a linear map P — P? from R to R° by setting
(3) (@i @i, - 23, ) = %ﬂ?n 0 Tjp O+ 0 Ty}
here by z;, o zj, o - o z;, we understand

(- (i o) o mig oo+ 0 i)

Theorem. If P(z1,z2,...,%n) € R®, then P =P,

This theorem gives answers to the both of our questions. It is sufficient
to write polynomisl P in the form

(4) P= Zailig...ikmilwig <o Ty
(indices iy,12,...,1; take values 1,2,...,n; the number k of indices varies
arbitrarily; the sum contains only finitely many summands) and to calculate

1
(5) Pzy,22, ... Z0) = 3 7 Girda. i iy O iy © 0 Tiy.

If the expressions (4) and (5) are not equal to each other then the pre-
sentation of polynomial P we are interested in is impossible whatsoever. If,
however, the equality takes place, it also provides us with an explicit solution
of the second question.

We sketch the proof of our theorem.

1. Every element of R is represented as a linear combination of ex-
pressions x;, o &y, o -+ 0 ;. So it suffices to prove the theorem only for
P=umx;ozj,o0---0oxy.

2. Let P and () be two polynomials in 1, x9,...,2Zs, with
Pzy,z3,...,%0) = Q(z1,22, .., %n).
Then for any n-tuple 43,49, . ..,in of natural numbers we have
POz, ziny .o i) = Qi) Tigy - - . T4 )

Hence the theorem will be proved if we check the equality P® = P for
P=xioxq0-- 0z,
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3. By definition of the commutator,
(6) Ty o®L20- 0Ly = Zahig...inmhwiz Ty,

where (i1,%2,...,%,) runs over all permutations of the numbers 1,2,...,n
and a;,;,.. 4, € K. On the other hand, using the identities

wov=—-vou, (Au+pv)ow = Auow) + u(voew),
(7) yovow+vowou-t+wouov =0,
U,'U,TUER, )\,,U-EK,

one can prove, for any fixed k& < n, the formula

(8) T10L30 -0y = Z Chjg..dn &k @ Zjy O - O Lf.y  Chkjp.kn € K
(jzl"'ljﬂ)

(the summation is taken over all permutations (ja73...Jn) of the numbers
1,2,...,k-1,k+1,...,n). Morcover, we have

(9) LK OLjy O+ 0T, =TTy T + ..+,

where dots denote monomials starting not from ;. Combining (6), (8) and
(9) forces Ckiz..jn = Ckja...jn, a0 thus

(10)

T10T30C - 0Lp = Z Qkjo...fnTh O Ljg O - O Xq, (k=172))n)
(d2---dn)

Adding together the equalities (10) over k, we get

(11) N-T)OTp0-+ Oy == E Qipig..inTi; © Tip O+ 2 O Ty,

(i132...3n)

where (i,12,...,%,) runs over all permutations of the numbers 1,2,...,n.
Comparing (3), (6), and (11), we see that

(z1oxg0---0z,)0 =21 02000 2.

Remark. From our proof above we can derive more than the theorem
claims. Let II(zy,z9,...,2Zn) be some expression obtained from the indeter-
minates xi,%2,...,2n by means of addition, multiplication by scalars and
taking commutators. Let P(x1,x2,...,%,) be the expression obtained if we
exclude all commutators from IT by changing % o v to uv — vu everywhere.
We have proved that IT is equivalent to PY, i.e. one of these expressions can
be transformed into another using only identities (7). Thus, II is equivalent
to zero if and only if P is equal to zero in the algebra R.

Corollary. By the theorem of Campbell-Hausdorff, homogeneous polyno-
mials P, (z,y) in series (2) can be expressed in terms of commutators. So,
by virtue of our theorem, P%(z,y) = Pp(x,y) and
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@(x,y) = log(exey) = (I)O(xa y) =

_ Z (_1)k-—1 1 (aPyPzPry® ... kayQ'k)O_
ko plalbalaal.. . pele!

(12)

Note that equality (12) can be verified by a direct calculation, and this
gives a new proof of the theorern of Campbell-Hausdorff. Formula (12) allows
one to make the construction of a Lie group from a Lie algebra much more
effective and simple.

1. Classical case. Let K be the field of complex or real numbers, and
R be a Lie algebra of finite rank over K. We put
(13) zxy=2z,y)
and show that by this a local group is defined, in a neighbourhood U of zero of
algebra R. Choose a basis €1,e2,...,e, in R. Let gyoe; =3 ¢ Uek (
K) and ¢ = max 3 75 AL For T =3 11 Mkek, we set {jz|] = cmaxy P\k!-

One can easily sec that: a) if z # 0 then ||zl| > 0; b) ||z +y) < ||l=|+ |zl
c) Ixz| = |Alllzll; @) lz oyl < llz|| - |v)); e) completeness: if jjzn ~ Zm| — 0
when both m and n go to infinity, then there exists such z that ||z —z,|| — 0
when n — oc.

It follows from the formula (12) that the series ®°(, y) converges for all
« and y such that the series log(el“llel¥ll) absolutely converges, i.e. ®%(z,y)
converges prowded ”:c” + lyll < log2. Thus the set of all 2 = 3 p_; Mex
such that |Ax] < 282 (k = 1,2,...,n) can be taken as the neighbourhood
U. Furthermore, from the remark to the theorem above and formula (12) it
follows immediately that % (y*x2) = (z*y) *z, zx0=2z, z*(—z) =

2. Let K be a field of characteristic zero and R be a Lie algebra over K.
The construction of item 1 is applicable to the algebra R provided:

A. The field K can be endowed with a real norm |)] satisfying the con-
ditions: a) if z # 0 then |A| > 0; b) {A + p| < [A] + ||; ©) [Aul = [Allg); d)
the completeness condition.

B. The algebra R can be endowed with a norm {z|| satisfying the condi-
tions a)—e) of item 1.

If algebra R is of finite rank over K then condition B follows from condi-
tion A as in item 1. R. Hooke [3] studied a special case of finite rank ‘algebras
over the field of p-adic numbers, and G. Birkhoff [4] studied algebras of in-
finite rank over the field of complex numbers.
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