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Thus let us define ¥, by y, (x(s ..., X,) = x, + ¥,(x1, ..., X,). Then we
have
(1.132)  exp(y,(x(, ..., %) X,) = exp(P,(x15 ..., x)X,) exp(x,X,,)-

Since X, is central, we have also
(1133) exp(xle+' ) '+ann) = exp(xle+' ' '+xn—an—l) exp(ann)'

Substituting from (1.132) and (1.133) into (1.129), using (1.131), and
canceling exp(x, X,) from both sides, we obtain

exp(x X+ + x,1 X))
= exp((x1 + Y1) X1) exp((x; + ¥2(x()) X2)
X v oo X eXP((Xpot F Va1 (X1s o v oy Xuoa)) X)) exp(F (X1, -+ -, X0) X)-

The left side is independent of x,,, and hence so is the right side. Therefore
Ya(x1, ..., X,) is independent of x,, and the proof of (1.130) fori = n is
complete.

Corollary 1.134. If N is a simply connected nilpotent analytic group,
then any analytic subgroup of N is simply connected and closed.

PROOF. Let n be the Lie algebra of N. Let M be an analytic subgroup
of N,letm C nbeits Lie algebra, let M be the universal covering group of
M, and let ¥ : M — M be the covering homomorphism. Assuming that
M is not simply connected, let m # 1 be in ker ¢. Since exp is one-one
onto for M by Theorem 1.127, we can find X € m with expy; X = m.
Evidently X # 0. By (1.82) applied to ¥, exp,, X = 1. By (1.82) applied
to the inclusion of M into N,exp, X = 1. But this identity contradicts the
assertion in Theorem 1.127 that exp is one-one for N. We conclude that
M is simply connected. Since exp,, and exp,, are consistent, the image of
m under the diffeomorphism exp, : n — N is M, and hence M is closed.

17. Classical Semisimple Lie Groups
The classical semisimple Lie groups are specific closed linear groups that

are connected and have semisimple Lie algebras listed in §8. Technically
we have insisted that closed linear groups be closed subgroups of GL (n, R)
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or G L(n, C) forsome n, but it will be convenient to allow closed subgroups
of the group G L(n, H) of nonsingular quaternion matrices as well.

The groups will be topologically closed because they are in each case the
sets of common zeros of some polynomial functions in the entries. Most
of the verification that the groups have particular linear Lie algebras as in
§8 will be routine. It is necessary to make a separate calculation for the
special linear group

SL(n,C)={ge€GL(n,C)|detg =1},

and this step was carried out in the Introduction; formula (0.10) and Propo-
sition 0.11e allowed us to see that the linear Lie algebra of SL(n, C) is
sl(n, C).

In practice we use this result by combining it with a result about inter-
sections: If G| and G, are closed linear groups with respective linear Lie
algebras g, and g,, then the closed linear group G| N G, has linear Lie
algebra g, N g,. This fact follows immediately from the characterization
in Proposition 0.14 of the linear Lie algebra as the set of all matrices X
such that expt X is in the corresponding group for all real 7. Thus when
“det g = 1” appears as a defining condition for a closed linear group, the
corresponding condition to impose for the linear Lie algebrais “Tr X = 0.”

The issue that tends to be more complicated is the connectedness of the
given group. If we neglect to prove connectedness, we do not end up with
the conclusion that the given group is semisimple, only that its identity
component is semisimple.

To handle connectedness, we proceed in two steps, first establishing
connectedness for certain compact examples and then proving in general
that the number of components of the given group is the same as for a

particular compact subgroup. We return to this matter at the end of this
section.

We turn to a consideration of specific compact groups. Define

SOn)={g€GL(n,R)|g*g=1and detg = 1}
(1.135) SU(m)={g€GL(n,C)|g*g=1and detg = 1}

Sp(n) ={g € GL(n, H) | gg = 1}.
These are all closed linear groups, and they are compact by the Heine-

Borel Theorem, their entries being bounded in absolute value by 1. The
group SO (n) is called the rotation group, and SU (n) is called the special
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unitary group. The group Sp(n) is the unitary group over the quater-
nions. No determinant condition is imposed for Sp(n). Artin [1957],
pp.- 151-158, gives an exposition of Dieudonné’s notion of determinant for
square matrices with entries from H. The determinant takes real values > 0,
is multiplicative, is 1 on the identity matrix, and is O exactly for singular
matrices. For the members of Sp(n), the determinant is automatically 1.

Proposition 1.136. The groups SO (n), SU(n), and Sp(n) are all con-
nected for n > 1. The groups SU(n) and Sp(n) are all simply connected
for n > 1, and the fundamental group of SO (n) has order at most 2 for
n > 3.

REMARK. Near the end of Chapter V, we shall see that the fundamental
group of SO (n) has order exactly 2 for n > 3.

PROOF. Consider SO (n). Forn = 1, this group is trivial and is therefore
connected. For n > 2, SO(n) acts transitively on the unit sphere in the
space R” of n-dimensional column vectors with entries from R, and the
isotropy subgroup at the n™ standard basis vector e, is given in block form

by
SO(n—1) 0
0 1/

Thus the continuous map g — ge, of SO (n) onto the unit sphere descends
to a one-one continuous map of SO (n)/SO(n — 1) onto the unit sphere.
Since SO (n)/SO (n — 1) is compact, this map is a homeomorphism. Con-
sequently SO (n)/SO(n — 1) is connected. To complete the argument for
connectivity of SO(n), we induct on #, using the fact about topological
groups that if H and G /H are connected, then G is connected.

For SU (n), we argue similarly, replacing R by C. The group SU(1) is
trivial and connected, and the action of SU (n) on the unit sphere in C" is
transitive for n > 2. For Sp(n), we argue with H in place of R. The group
Sp(1) is the unit quaternions and is connected, and the action of Sp(n) on
the unit sphere in H" is transitive for n > 2.

The assertions about fundamental groups follow from Corollary 1.98,
the simple connectivity of SU(1) and Sp(1), and the fact that SO (3)
has fundamental group of order 2. This fact about SO(3) follows from
the simple connectivity of SU(2) and the existence of a covering map
SU@2) — SO(3). This covering map is the lift to analytic groups of the
composition of the Lie algebra isomorphisms (1.4) and (1.3b).
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It is clear from Proposition 1.136 and its remark that the linear Lie
algebras of SO(n) and SU (n) are so(n) and su(n), respectively. In the
case of matrices with quaternion entries, we did not develop a theory of
closed linear groups, but we can use the correspondence in §8 of n-by-n
matrices over H with certain 2n-by-2n matrices over C to pass from Sp(n)
to complex matrices of size 2n, then to the linear Lie algebra, and then
back to sp(n). In this sense the linear Lie algebra of Sp(n) is sp(n).

Taking into account the values of n in §8 for which these Lie algebras
are semisimple, we conclude that S O (r) is compact semisimple forn > 3,
SU (n) is compact semisimple forn > 2,and Sp(n) is compact semisimple
forn > 1.

Two families of related compact groups are

On)={geGL0n,R)|g'g=1}

(1137 Ul = (g € GL(,C) | g8 = 1).

These are the orthogonal group and the unitary group, respectively. The
group O (n) has two components; the Lie algebra is so(n), and the identity
component is SO (n). The group U (n) is connected by an argument like
that in Proposition 1.136, and its Lie algebra is the reductive Lie algebra
u(n) = su(n) @ R.

Next we consider complex semisimple groups. According to §8,
sl(n, C) is semisimple for n > 2, so(n, C) is semisimple for n > 3,
and sp(n, C) is semisimple for n > 1. Letting J, , be as in §8, we define
closed linear groups by

SL(n,C) = {g € GL(n, C) | detg = 1)
(1.138) SOn,C)={geSL0n,C)|g'g=1}
Sp(n,C) ={g € SL(2n,C) | g'Jng = Jun}-

We readily check that their linear Lie algebras are sl(n, C), so(n, C), and
sp(n, C), respectively. Since GL(n, C) is a complex Lie group and each
of these Lie subalgebras of gl(n, C) is closed under multiplication by i,
Corollary 1.116 says that each of these closed linear groups G has the
natural structure of a complex manifold in such a way that multiplication
and inversion are holomorphic.

Proposition 1.139. Under the identification M — Z (M) in (1.65),

Spn) = Spn, ©)NU2n).
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PROOF. From (1.65) we see that a 2n-by-2r complex matrix W is of the
form Z(M) if and only if

(1.140) JW=W/J.

Let g be in Sp(n). From g*g = 1, we obtain Z(g)*Z(g) = 1. Thus
Z(g) is in U(2n). Also (1.140) gives Z(g)'JZ(g) = Z(g)'Z(g)J =
(Z(g)*Z(g))J = J,and hence Z(g) isin Sp(n, C).

Conversely suppose that W is in Sp(n, C) N U (2n). From W*W = 1
and W' JW = J, we obtain J = WWW L UW = WW)W L UW =
W-'JW and therefore WJ = JW. By (1.140), W = Z(g) for some
quaternion matrix g. From W*W = 1, we obtain Z(g*g) = Z(g)*Z(g) =
1 and g*g = 1. Therefore g is in Sp(n).

We postpone to the end of this section a proof that the groups SL(n, C),
SO (n,C),and Sp(n, C) are connected for all n. We shall see that the proof
of this connectivity reduces in the respective cases to the connectivity of
SU(n), SO(n), and Sp(n,C) N U(2n), and this connectivity has been
proved in Propositions 1,136 and 1.139. We conclude that SL(n, C) is
semisimple forn > 2, SO(n, C) is semisimple for n > 3,and Sp(n, C) is
semisimple forn > 1.

The groups SO (n, C) and Sp(n, C) have interpretations in terms of bi-
linear forms. The group SO (n, C) is the subgroup of matrices in SL(n, C)
preserving the symmetric bilinear form on C" x C” given by

X Y
< ’ >:x1yl+"'+xnyna

Xn Yn

while the group Sp(n, C) is the subgroup of matrices in SL(2n, C) pre-
serving the-alternating bilinear form on C** x C?" given by

X1 Y1
< ) >=xlyn+l+"'+xny2n_xn+1yl_"'—x2nyn'
Xon y2n

Finally we consider noncompact noncomplex semisimple groups. With
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notation I, , and J, , as in §8, the definitions are
SL(n,R)={g e GL(n,R)|detg =1}
SL(n,H) ={g € GL(n,H) | detg =1}
SO(m,n) ={g € SLm+n,R) | g1 g = L0}
(1.141) SU(m,n) ={g € SLm+n,C) | g"1n,g = I}
Sp(m,n) ={g € GL(m +n,H) | "1, ,§ = Ln}
Sp(n,R) ={g € SL2n,R) | g’ Ju.,8 = Jun}
SO0*(2n) ={g e SUWm,n) | g'LinJung = LinJun}
Some remarks are in order about particular groups in this list. For SL(n, H)
and Sp(m, n), the prescription at the end of §8 allows us to replace the
realizations in terms of quaternion matrices by realizations in terms of
complex matrices of twice the size. The realization of SL(n, H) with com-
plex matrices avoids the notion of determinant of a quaternion matrix that

was mentioned before the statement of Proposition 1.136; the isomorphic
group of complex matrices is

SU*(2n) = {(2 fé) c SL(2n,(C)].

The groups SO (m, n), SU(m, n), and Sp(m, n) are isometry groups of
Hermitian forms. In more detail the group

Om,n)={geGLm+n,R)|g"],,8 = lnn}

is the group of real matrices of size m +n preserving the symmetric bilinear
form on R™*+" x R™+" given by
X1 Vi
: ’ >:xlyl+'"+xmym_xm+lym+l_'"_xm+nym+m
xm+n ym+n
and SO (m, n) is the subgroup of members of O(m, n) of determinant 1.
The group

Um,n)=1{ge€eGLm+n,C)| g 1,,,8 = Lnn}

is the group of complex matrices of size m + n preserving the Hermitian
form on C"+" x €™+ given by

X1 N
: s > - xlﬁ+"'+xrrzy;_xm+lm_'”_x"’+"y’"—+”’

xm+n VYmin
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and SU(m, n) is the subgroup of members of U (m, n) of determinant 1.
The group Sp(m, n) is the group of quaternion matrices of size m + n
preserving the Hermitian form on H"*" x H"*" given by

X1 3
< ’ >: xlﬂ+"'+xm5};_xm+1ym+l_"'_xm+nym+na
X

m+-n Yman

with no condition needed on the determinant.

The linear Lie algebras of the closed linear groups in (1.141) are given
in a table in Example 3 of §8, and the table in §8 tells which values of
m and n lead to semisimple Lie algebras. It will be a consequence of
results below that all the closed linear groups in (1.141) are topologically
connected except for SO (m, n). In the case of SO (m, n), one often works
with the identity component SO (m, n), in order to have access to the full
set of results about semisimple groups in later chapters.

Let us now address the subject of connectedness in detail. We shall work
with a closed linear group of complex matrices that is closed under adjoint
and is defined by polynomial equations. We begin with a lemma.

Lemma 1.142. Let P : R — R be a polynomial, and suppose
(ai,...,a,) has the property that P(e*, ..., k) = 0 for all integers
k > 0. Then P(e'™,...,e" ) = 0forallreal .

PROOF. A monomial cx’l' cen x,’,", when evaluated at (¢, ..., €'*), be-

comes ce’z“"'. Collecting terms with like exponentials, we may assume
that we have an expression Z;‘;l c,e'™ that vanishes whenever ¢ is an
integer > 0. We may further assume that all ¢, are nonzero and that
by < b, < --- < by. We argue by contradiction and suppose N > 0.
Multiplying by e~"** and changing notation, we may assume that by = 0.
We pass to the limit in the expression Z,N=1 c,e'™ as t tends to +00 through
integer values, and we find that ¢y = 0, contradiction.

Proposition 1.143. Let G € GL(n, C) be a closed linear group that is
the common zero locus of some set of real-valued polynomials in the real
and imaginary parts of the matrix entries, and let g be its linear Lie algebra.
Suppose that G is closed under adjoints. Let K be the group GNU (n),and
let p be the subspace of Hermitian matricesin g. Thenthe map K xp — G
given by (k, X) > ke is a homeomorphism onto.
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PROOF. For GL(n, C), the map
U (n) x {Hermitian matrices} - G L(n, C)

given by (k, X) — ke* is known to be a homeomorphism; see Cheval-
ley [1946], pp. 14-15. The inverse map is the polar decomposition of
GL(n, C).

Let g be in G, and let g = ke* be the polar decomposition of g within
G L(n, C). To prove the proposition, we have only to show that & is in G
and that X is in the linear Lie algebra g of G.

Taking adjoints, we have g* = ¢¥k~! and therefore g*g = ¢**. Since
G is closed under adjoints, ¢** is in G. By assumption, G is the zero locus
of some set of real-valued polynomials in the real and imaginary parts of
the matrix entries. Let us conjugate matters so that ¢** is diagonal, say
2X = diag(ay, ..., a,) with each g, real. Since €?* and its integral powers
are in G, the transformed polynomials vanish at

(ezx)k = diag(ek“', ek

for every integer k. By Lemma 1.142 the transformed polynomials vanish
at diag(e'™, ..., e'") for all real . Therefore ¢'* is in G for all real 7. It
follows from the definition of g that X is in g. Since ¢* and g are then in
G,k isin G. This completes the proof.

Proposition 1.143 says that G is connected if and only if K is connected.
To decide which of the groups in (1.138) and (1.141) are connected, we
therefore compute K for each group. In the case of the groups of quaternion
matrices, we compute K by converting to complex matrices, intersecting
with the unitary group, and transforming back to-quaternion matrices. The
results are in (1.144). Inthe K column of (1.144), the notation S( - ) means

G K up to isomorphism
SL(n,C) SU(n)
SO(n,C) SO(n)

Sp(n, C) Sp(n) or Sp(n, C)y N U(2n)
SL(n, R) SO (n)

(1.144) SL(n,H) Sp(n)
SO(m,n) S(O(m) x O(n))
SU(m, n) S(U(m) x Un))
Sp(m, n) Sp(m) x Sp(n)
Sp(n, R) U(n)
SO*(2n) U)
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the determinant-one subgroup of (-). By Propositions 1.136 and 1.139
and the connectedness of U (n), we see that all the groups in the K column
are connected except for S(O(m) x O(n)). Using Proposition 1.143, we
arrive at the following conclusion.

Proposition 1.145. All the classical groups SL(n, C), SO(n, C),
Sp(n,C), SL(n,R), SL(n,H), SU(m,n), Sp(m,n), Sp(n,R), and
SO*(2n) are connected. The group SO(m, n) has two components if
m > 0andn > 0.

18. Problems

1. Verify that Example 12a in §1 is nilpotent and that Example 12b is split
solvable.

2. For <a ? ) any nonsingular matrix overk, letg /, g\ bethe 3-dimensional
Y (%)
algebra over k with basis X, Y, Z satisfying
[X,Y]=0
[X,Z]=aX + B8Y
[Y,Z]=yX +§Y.

001
(a) Show that g/, g\ Is a Lie algebra by showing that X <« <0 0 0),
y 5) 000

000 ayo0
Y & <o 0 1>, Z < — <,s 8 0> gives anisomorphism with a Lie algebra

000 000
of matrices.
(b) Show that g (,, g\ 1s solvable but not nilpotent.
Y 5)

(¢) Letk = R. Take 8 = 1 and B8 = y = 0. Show that the various Lie
algebras g/, 0) for « > 1 are mutually nonisomorphic. (Therefore for

01
k = R that there are uncountably many nonisomorphic solvable real Lie

algebras of dimension 3.)

3. Let
al *
s(n, k) = Xeg[(n,lk)lX:( )

0 a,



