1. Classical Groups 1

The elements of the groups defined in this chapter are matrices with
entries in one of the three fields:

R the field of real numbers,
C the field of complezr numbers,
H the field of quaternions.

Note that H, the field of quaternions (or hamiltonians), is not commutative.
The quaternions will be examined in great detail, along with the octonions
O (or Cayley numbers), in Chapter 6 on normed algebras. For the purposes
of this chapter, a rudimentary knowledge of H is all that is presupposed.
Consult Problem 6 for the multiplication rules for quaternions.

Let M,(R), M,(C), and M, (H) denote the algebras of n x n matrices
with entries in R, C, and H respectively. Represent elements z of R®, C",
and H™ as column n-tuples. Then each matrix A determines a linear
transformation or endomorphism z — Az by letting the matrix A act on
the left of the column vector z, at least in the real and complex case.
Special consideration is necessary for the quaternionic case since H is not
commutative. In order for the map A : H® — H" (defined by A acting
on z on left) to be H-linear, we are forced to let the scalars H act on the
H-vector space H” on the right!

Although it will be convenient to consider both right H-vector spaces
(where the scalars H act on the right of the vectors) and left H-vector
spaces (where the scalars H act on the left of the vectors), the space H” of
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4 The General Linear Groups

column n-tuples will always be considered as a right H-vector space. Then
we have

(1.1) M,(R) = Endg(R™),
(1.2) M,(C) = Endc(C™),
(1.3) M, (H) = Endg(H).

Here Endr (V') denotes the F-linear maps from a vector space V, with
scalar field F', into itself. If V is a real vector space, then EndrV is
naturally a real algebra (associative and with unit). If V is a complex
vector space, then EndcV is naturally a complex algebra (associative and
with unit) but may also be considered as a real algebra, which is convenient
for some immediate purposes. Finally, if V is a right quaternionic vector
space, then Endyg (V') is naturally a real algebra—in fact, a real subalgebra
of the algebra Endr (V). There is no canonical way to make Endg (V) into
even a quaternionic vector space (right or left), much less a “quaternionic”
algebra (see Problem 7).

THE GENERAL LINEAR GROUPS

The group of units, or invertible elements, in the matrix algebra M, (F') is
called the F-general linear group for F = R, C, or H and is denoted by
GL(n,R),GL(n,C), or GL(n,H), respectively. If the group of units, or
invertible elements, in Endr (V') is denoted by GLg(V'), then

(1.1) GL(n, R) = GLr(R"),
(1.2)) GL(n, C) = GLc(R™),
(1.3 GL(n, H) = GLy(H").

In the quaternion case, there is another important group, larger than
the H-general linear group GL(n,H), which we will call the enhanced H-
general linear group. First note that the H-general linear group GL(n, H)
(which acts on the left) consists entirely of H-linear maps. However, right
multiplication by a scalar A € H, denoted R,, is not necessarily H-linear.
In fact, Ry is H-linear if and only if A commutes with all scalars p € H
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because Ry(zp) = zp), while Ry(z)p = Ap. The reader should confirm
that A commutes with all ¢ € H if and only if A € R C H. Thus, Ry
is H-linear if and only if A € R C H. Let H* denote the group of right
multiplications by nonzero scalars. Then H* is not a subgroup of GL(n, H).
However, both are contained in the algebra Endg (H") of R-linear maps.
As noted above, the intersection GL(n, H) N H* equals R* the group of
real nonzero multiples of the identity.

The enhanced H-general linear group, denoted GL(n, H) - H*, is de-
fined to be the image of GL(n, H) x H* in Endr (H") via the map sending
the pair (A4,)) to L4 - Ry, where - denotes multiplication in the algebra
Endg(H"), i.e., composition. Thus, the following sequence of groups is
exact:

(1.4) 1— R* — GL(n,H) x H* — GL(n,H) - H" — 1

with GL(n, H)-H* C Endr(H"). Note that the larger group GL(n, H)-H*,
as well as the smaller group GL(n, H), maps quaternion lines to quaternion
lines.

Given A € M,(R), the real determinant of A will be denoted detgr A.
Similarly, detc A denotes the complex determinant of A € M,(C). The
lack of commutativity for H eliminates the possibility of any useful notion
of “quaternionic determinant.” Of course,

GL(n,R) = {A € M,(R) : detp A # 0},
(1.5) and
GL(n,C) = {4 € M,(C) : detc A # 0}.

The group
(1.6) GL*(n,R) = {4 € M,(R) : detg A > 0}
is called the orientation-preserving general linear group.
In both the real and the complex case, we have a special linear group,

defined by

(1.7) SL(n,R) = {A € M,(R) : detg A = 1},

(1.8) SL(n,C) = {A € M,(C) : detc A = 1}.

Since there is no quaternion determinant, if we proceed in exact anal-
ogy with the real or the complex case, the special quaternion linear group
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does not exist. However, it is useful to retain the notation SL(n,H) by
employing the real determinant. Let

(1.9) SL(n,H) = {A € GL(n,H) : detp A = 1}

denote the special quaternion linear group.

GROUPS DEFINED BY BILINEAR FORMS

Some very interesting groups are best defined as subgroups of the groups
defined above that fix a certain bilinear form.
R-symmetric

The orthogonal group O(p, q) with signature p,q is defined to be the
subgroup of GL(n,R) (n = p + ¢) that fixes the standard R-symmetric
form

(1.10) €z,y) STy 4+ Tplp — Tp41¥p41 — = TnYn.

That is,

O(p,q) = {A € GL(n,R) : e(Az, Ay) = e(z,y) for all z,y € R"}.

R-skew (or symplectic)

The real symplectic group Sp(n,R) is defined to be the subgroup of
GL(2n, R) that fixes the standard R-symplectic (or R-skew) form

(1.11) e=dry Adzy+ -+ -+ dxon_1 Adza,,
or

(1.11’) e(x,y) Sn1Y2— oY1 + -+ T2n-1Y2n — TanY2n-1.

That is,

Sp(n,R) = {A € GL(2n,R) : ¢(Az, Ay) = ¢(z,y) for all z,y € R*"} .
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C-symmetric
The complez orthogonal group O(n,C) is defined to be the subgroup
of GL(n, C) that fixes the standard C-symmetric form

(1.12) e(z,w) = 21wy + - - + ZpWn.

C-skew (or symplectic)

The complex symplectic group Sp(n, C) is defined to be the subgroup
of GL(2n, C) that fixes the standard C-symplectic (or C-skew) form

(113) EElef\d22+ "'+d22n__1 /\den,
or

(1.13")  e(z,w) = z1wz — 22wy + -+ - + Z2n-1W2n — Z2nWan—1.

C-hermitian (symmetric)

The complez unitary group U(p, q) with signature p,q is defined to be
the subgroup of GL(n, C) (n = p + q) that fixes the standard C-hermitian
symmetric form

(114) 5(2, ’U)) S21W1+ -+ 2pWp — 2p41 Wp1 — - — 2n Wn, .

Remark 1.15. ic(z,w) is called the standard C-hermitian skew form.
Note that the group that fixes ic is just the same group U(p, q) that fixes
€. This contrasts sharply with the quaternion case.

H-hermitian symmetric

The hyper-unitary group HU(p, q) with signature p,q is defined to be
the subgroup of GL(n,H) (n = p+ q) that fixes the standard H-hermitian
symmetric form

(1.16) &, Y) = Tayi+ -+ TplYp — Tp1Yps1 — - — T

Note: ¢(z,y) is H-hermitian. This means that € is additive in both vari-
ables z and y, and e(z), y) = Ae(z,y), £(z,y)) = e(z,y)A for all scalars
A € H. Also note that zy is not H-linear in z. In fact, there is no standard
H-symmetric or H-skew form (see Problem 8).



Remark. The group HU(p, ¢) is usually denoted “Sp(p, q)” and called the
“symplectic group.”

H-hermitian skew
The skew H-unitary group SK(n,H), or SK(n), is defined to be the
subgroup of GL(n, H) that fixes the standard H-hermitian skew form

(1.17) e(z,y) =Tviyy + - + Tniyn.

Remark. This ¢ is the quaternion i (see Problem 6). In Chapter 2, we
shall see that if the ¢ occurring in (1.17) is replaced by any unit imaginary
quaternion u € S? C Im H, then the new form ¢’ differs from the old form
€ by a coordinate change, i.e., an element of GL(n, H).

Table 1.18. The groups defined by bilinear forms

hermitian hermitian
symmetric € skew ¢ symmetric € skew ¢
R O(p,q) Sp(n, R)
C O(n, C) Sp(n, C) U(p,q) U(p,q)
HU(p, q) SK(n,H)

OTHER MISCELLANEOUS GROUPS

The subgroups defined by requiring either detr or detc to be equal to one
can also be defined by requiring that an n-form be fixed. The skew n-form

(1.19) der=dz, A---ANdz,
on R" is called the standard volume form on R™, while the skew n-form
(1.19") dz=dznA---ANdz,

on C" is called the standard complex volume form on C". The volume
form transforms, under a coordinate change, by multiplication by the de-
terminant:

A*dz = (detr A)dz for all A € EndrV
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and
B*dz = (detc B)dz for all B € EndcV.

Here A* denotes the dual (or pull back) map associated with A, which
is defined by (A*a)(u) = a(Au) if « is a form of degree one and by
A*(@' A+ Aa*) = A*a' A---AA%eF ifa = o' A--- A aF is the sim-
ple product of degree one forms. This provides the most elegant definition
of the determinant. Frequently, this is also the most useful. For example,
see Problem 4. This definition gives

(1.20) SL(n,R) = {4 € GL(n,R) : A*dz = dz},

(1.20") SL(n,C) = {4 € GL(n,C) : A*dz = dz}.
The special orthogonal group with signature p,q is defined by
(1.21) SO(p,q) ={A € O(p,q) : detp A = 1}.
The special complez orthogonal group is defined by
(1.22) SO(n,C)={A € O0(n,C) : detc A = 1}.
The special unitary group is defined by
(1.23) SU(p,q) ={A€U(p,q) : detc A =1}.
The various other possibilities do not lead to new groups. This is a
consequence of the facts presented below—see (1.24), (1.25), (1.26), Lemma

1.28, (1.29), and (1.30).
Consult Problem 5 for proofs of the following:

(1.24) if A €Sp(n,R), then detg A =1;
and
(1.25) if A € Sp(n,C), then detc A=1.

Forgetting the complex structure on C”, the complex vector space
C™ becomes a real vector space of dimension 2n. This embeds the alge-
bra Endc(C") of complex linear maps into the algebra Endgr(C") of all
real linear maps. Thus, for a € M,(C), the real determinant detg A has
meaning as well as detc A. See Problem 4 for a proof of the result:

(1.26) if A€ M,(C), then detr A = |detc 4|2
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The quaternion vector space H” can be considered as a complex vector
space in a variety of natural ways (more precisely, a 2-sphere S? of natural
ways). Let ImH denote the real hyperplane in H with normal 1 € H. Let
$? denote the unit sphere in ImH. Then, for each u € S? u? = —yu =
—|ul? = —1. Therefore, right multiplication by u, defined by

R,z =zu forall z e H”,

is a complez structure on H™; that is, R2 = —1. This property enables
one to define a complex scalar multiplication on H” by (a + bi)z = (a +
bRy)(z) for all a,b € R and all z € H", where i> = —1. Note that
Endyg(H") C Endc(H") for each of the complex structures R, on H",
where u € S2 C ImH. Choosing a complex basis for H” provides a
complex linear isomorphism H™ 2 C2". Sometimes it is convenient to
select this complex basis as follows. Let C(u) denote the complex line
containing 1 in each of the axis subspaces H C H". Thus, C(u) is the real
span of 1 and u. Let C(u)! denote the complex line orthogonal to C(u)
in H C H*. Then .

(1.27) H" = [C(u) @ C(u)*]" = ¢,

Assume the complex structure on H” has been fixed, say R;, then as
noted above Endy(H") C Endc(C?"). Moreover, given A € End¢(C?"),
one can show that

A € Endu(H") if and only if AR; = R; A.

This is a useful characterization of the subspace Endy(H") of Endc(C?").

Lemma 1.28. For each complex structure Ry on H" (determined by right
multiplication by a unit imaginary quaternion « € S C Im H) and for each
A € M,(H) the complex determinant detc A is the positive square root of
detr A, independent of the complex structure R,.

Proof: First, we show that the complex determinant of A € Mp(H) is
real for all A € M, (H). We will give the proof for the particular complex
structure R;. Consider the case n = 1. Let ¢g = liey=id,e2 =4, and eg =
k denote the standard real basis for the quaternions H. Let % w! w? w3
denote the standard dual basis. Then

dz' =0 4 iw!, dz? = w? — i3
is a basis for the complex forms of type 1,0 on H = C? (with complex

structure R;). Note that Rj(dz') = ~dz? and R;(dz?) = d7', so that
R;j(dz' Adz?) =d7' AdF2.
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Now
RjA*(dz' Adz®) = Rj(detc A d2' Adz?) = detc A dZ' Ad 7P,
while
A*R;(dz! Ad2?) = A*(dZ' AdZ?) = detc A dZ' Ad 7.

Therefore, detc A € R isreal since AR; = R;jA. The proof, for n > 1, that
detc A € R for all A € M,(H) is similar and omitted. Because of (1.26),
it remains to show that

detc A>0 if A€ GL(n,H).

Since detc I = 1 and GL(n, H) is connected (Problem 3), the set {detc A:
A € GL(n,H)} is a connected subset of R — {0} containing 1, and hence
it is contained in R*. W

For elements of the subgroups HU(p, q) and SK(n,H) of GL(n, H),
the real determinant is already equal to one (and hence by Lemma 1.28 all
the various complex determinants are also equal to one). That is,

(1.29) detr A=11if A € HU(p,q);
(1.30) detp A =1if A € SK(n, H).

Both of these facts follow from (1.24), since both HU(p, ¢) and SK(n, H) are
contained in Sp(2n, R) for a suitable choice of coordinates. For example,
if A fixes the ¢ defined by (1.16), i.e., A € HU(p,q), then A fixes the
real valued skew form Reie(z,y), which under a coordinate change is the
symplectic form given by (1.11'). The details are provided in the next
chapter—see Lemma 2.80 and Equation (2.91).

In the quaternion case, there is always the option of enlarging the
group by utilizing right scalar multiplications. Recall (1.4) how the group
GL(n,H) - H* is an enhancement of the quaternionic general linear group
GL(n,H). For another example, consider the enhanced hyper-unitary group
(perhaps a better name is the quaternionic unitary group). This group is
denoted HU(p, ¢) - HU(1) and defined to be the subgroup of Endg(H")
generated by letting HU(p, g) act on H" on the left and the unit scalars
HU(1) = $® act on H™ on the right. Since

(1.31) 1 — Z; — HU(p,q) x HU(1) %5 Endr(H")
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is exact, where Zy = {1,—1} and where HU(1) = {R, : y € S® C H}, it
follows that

(1.32) HU(p,q) - HU(1) = (HU(p, q) x HU(1))/Z>.

See Problem 3.15 for more information about the quaternionic unitary
group HU(p,q) - HU(1). For example, this group fixes a 4-form & €
A4(Hn )-‘

Remark 1.33. In the special case of n = p = 1, and ¢ = 0, HU(1) acting
on the left equals {L, : |a| = 1}, while HU(1) acting on the right equals
{R5 : |b] = 1}. In fact, the quaternionic unitary group is just the special
orthogonal group. That is,

(1.34) HU(1) - HU(1) =SO(4),
or equivalently,
(1.34") x : HU(1) x HU(1) —> SO(4),

is a surjective group homomorphism with kernel Z, = {—1, 1}, where the
map x is defined by

Xa,(2) = arb forallz € H.

To prove (1.34'), first note that by (1.29), or more directly, by Problem
6(b), detr Ly = 1 if |a] = 1 (similarly detr Ry = 1 if || = 1). Second,
one can show that |az| = |a| |z| under quaternion multiplication. Thus,
L, € O4) if |a| = 1 (similarly Ry € O(4) if || = 1). This proves that
HU(1) - HU(1) = x(HU(1) x HU(1)) C SO(4). The surjectivity of x can
be demonstrated with a topological argument based on dimension, once it
is known that SO(4) is connected (see Corollary 3.31). A nontopological
proof that y is surjective is provided by Problem 4.9.

If HU(1) denotes the diagonal copy of S = {a € H : |a|] = 1} embed-
ded in HU(1) x HU(1) and Y is restricted to HU(1), then

HU(1)

X
7 =50(3).

(1.35)

To prove (1.35), it suffices to note that the subgroup of SO(H) that fixes

1 € H is just SO(ImH) and that the subgroup of HU(1) x HU(1) that

maps into SO(Im H) equals {(a,b) € HU(1) x HU(1) : a b = 1} = HU(1).
The quaternionic enhancements are summarized as follows.
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Group Enhanced Group

general linear GL(n,H)  GL(n,H)-H* enhanced general linear
special linear SL(n,H) SL(n,H)-HU(1) enhanced special linear
hyper-unitary HU(p,q) HU(p,q)- HU(1) enhanced hyperunitary
skew-unitary SK(n,H) SK(n,H)-HU(1) enhanced skew unitary

Of course, one can always enhance a group G with R*, or R* =
R — {0}, if the nonzero multiples of the identity do not already belong to
G. The groups G - Rt are usually referred to as conformal groups. For
example,

(1.36) CO(p,q) = O(p,9) - R* = O(p, 9) x R*

is called the conformal (orthogonal) group of signature p,q. This group,
perhaps the most important conformal group, is usually defined by requir-
ing that the inner product € (see (1.10)) be fixed up to a positive scalar
multiple (or conformal factor):

CO(p, q) = {A € GL(n,R) : for some X € R, ¢(Az, Ay)

1.36/
( ) = Xe(z,y) for all z,y € R™}.
Similarly,
CSO(p,q) =SO(p,q) - R*
(1.37) (»9) (p,9)

= {A€GL*(n,R): A*c = A¢ for some X € R*}

is called the special conformal group of signature p,q.

If both p,q > 1, then (see Chapter 3) SO(p, ¢) has two connected com-
ponents. The connected component of the identity, denoted by SOT(p, ),
is, of course, a subgroup of SO(p, ¢). This subgroup SO'(p, q) of SO(p, q) is
called the reduced special orthogonal group. Later, in Chapter 4, additional
subgroups of O(p, q), denoted O*(p, q), and O~ (p, ¢) will be discussed in
some detail. Briefly, if p,q > 1, then O(p, ¢) has four connected compo-
nents. Adding any one of the remaining three components to SO'(p, q)
yields three additional subgroups of O(p,gq), denoted SO(p, q), 0*(p, q),
and O~ (p,q) . Thus, the intersection of any two of these three is always
SO'(p, q). See Chapter 4 for the details.

ISOMORPHISMS

The unit circle

(1.38) S'={z€C:|z|=1}
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in the complex plane C is a group under complex multiplication. By def-
inition, the groups U(1) and S! are the same. Of course, S? = {¢'? : 0 €
R} = R/27Z. The group of nonzero complex numbers under complex
multiplication is denoted by C*, and by definition, GL(1, C) = C*.

The set of unit quaternions

(1.39) P ={zeH:|z|=1} |

also forms a group under quaternionic multiplication. Again, by definition,
the groups HU(1) and S are the same.

Also, by definitions (1.20) and (1.20"), we have SL(2,R) = Sp(1,R)
and SL(2,C) = Sp(1,C). The more difficult equality HU(1) - HU(1) =
SO(4) has already been discussed. These and other coincidences are listed
in the next proposition.

Proposition 1.40. The following isomorphisms hold

(1.41) SO(2) = U(1) = SK(1) = St,
(1.42) CSO(2) = GL(1,C) = C* = S0(2, C),
(1.43) SU(2) = HU(1) = SL(1,H) = S8,
(1.44) Sp(1,R) = SL(2,R) = SU(1, 1),
(1.45) Sp(1,C) = SL(2,C),

(146)  HU(1)-HU(1)~SO(4) and GL(1,H)-H* = CSO(4),

(1.47) SO'(3,1) = SO(3, C).

The last isomorphism (1.47) will be verified in the section on special
relativity in Chapter 3.

The proofs of all of the other isomorphisms in Proposition 1.40 are left
as an exercise (see Problems 9, 10, and 11). One of these isomorphisms,
SU(2) = HU(1), warrants the following discussion.

Let H have the complex structure R;z = zi (right multiplication by
7). Thus, H 2 C2, where each p € H can be expressed as p = z + jw with
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z,w € C C H. Now each A € M;(H) = Endu(H) can be considered as
acting on H on the left, hence A € Endc(C?) = M,(C) is a complex linear
transformation of H = C2. Using the coordinates p = z + jw = (z, w) for
p € H = C2, the complex linear map A expressed as a complex matrix is

given by _
_fa b
A= (b a) ’

where A = a+ jb, a,b € C C H. This is because

Aj = (A-l)j:(a+jb)j:—b+jﬁ,
This proves

(1.48) My (H) = {(‘; ‘2) € Mx(C): a,be C} .
The isomorphism HU(1) = SU(2) is derived from (1.48) (see Problem
10).

Remark. In the standard reference (Helgason [10]), SL(n, H) is denoted
by SU*(2n), SK(n, H) is denoted by SO*(2n), and HU(p, q) is denoted by
Sp(p, 9)-

SUMMARY

The three general linear groups GL(n,R),GL(n,C), and GL(n, H) and
the seven groups described in Table 1.18 can be changed by imposing re-
strictions on determinants and/or by enhancing with scalar multiplication.
The connected component of the identity in SO(p, ¢) with p,¢ > 1 is also
a group. All the groups introduced in this chapter can be obtained in this
way.

In low dimension, some of these groups coincide. One of the most inter-
esting isomorphisms is SU(2) = HU(1). The topic of special isomorphisms
in low dimensions will be discussed again in Chapter 14.

PROBLEMS

1. Establish M,(F) = Endr(F™) and GL(n, F) = GLp(F") for F =
R,C,H.

2. If A € M,(H) = Endu(H") is injective, then A1 is H-linear.



