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5 - Algebraic structure of Lie groups

I.G. MACDONALD
Queen Mary College, London

This survey of the algebraic structure of Lie groups and Lie
algebras (mainly semisimple) is a considerably expanded version
of the oral lectures at the symposium. It is limited to what is
necessary for representation theory, which is another way of
saying that very little has been left out. In spite of its
length, it contains few proofs or even indications of proofs,
"por have I given chapter and verse for each of the multitude
of unproved assertions throughout the text. Instead, I have
appended references to each section, from which the diligent

reader should have no difficulty in tracking down the proofs.

I. Lie Groups and Lie Algebras

1. Vector fields

Let M be a smooth (Cm) manifold, and for each point X e¢ M
let TX(M) denote the vector space of tangeﬁﬁiyectors to M
at x . The union of all the Tx(M) is the tangent bundle T(M)
of M . Locally, if U if a coordinate neighbourhood in M,
the restriction of T(M) to U is just U><Rﬁ , where n 1is
the dimension of M . Each smoothmap ¢ : M > N , where N is
another smooth manifold, gives rise to a tangent map T(¢) : T(M)
+ T(N) , whose restriction Tx(¢) to the tangent space TX(M)

is a linear mapping of Tx(M) into (N) . In terms of

T
$(x)
local coordinates in M and N , TX(¢) is given by the
Jacobian matrix. The familiar rule for differentiating a func-—
tion of a function now takes the form T(¢o9) = T(¢) o T(Y) , so

that T is a functor (from smooth manifolds to smooth manifolds).
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1. Vector fields

let M be a smooth (Cm) manifold, and for each point X ¢ M
let TX(PD denote the vector space of tangedﬁﬂyectors to M
at X . The union of all the TX(M) is the tangent bundle T(M)
of M . Locally, if U if a coordinate neighbourhood in M,
the restriction of T(M) to U is just UxR" , where n is
the dimension of M . Each smooth map ¢ : M >N , where N is
another smooth manifold, gives rise to a tangent map T(¢) : T(M)
+ T(N) , whose restriction Tx(¢) to the tangent space TX(M)

is a linear mapping of Tx(M) into (N) . In terms of

To(x

local coordinates in M and N , Tx(¢) is given by the

Jacobian matrix. The familiar rule for differentiating a func-—
tion of a function now takes the form T(¢ oy) = T(¢$) o T(y) , so

that T is a functor (from smooth manifolds to smooth manifolds).
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- the space of vector fields on a manifold M has the structure

In particular, if N = R, each tangent space Ty(N) may be
canonically identified with R . Hence if f is a smooth real-j
valued function defined on an open neighbourhood of xe M, andi
£ is a tangent vector at X , then Tx(f).E is a real number,
the directional derivative of £ at Xx in the direction § , |

A (smooth) vector field on M is a function X which assign;
to each x € M a tangent vector X(x) € TX(M) , varying smooth1;
with x ; in other words, X is a smooth section of the tangent|
bundle T(M) . X acts on smooth functions as follows: 1
|
(X£) (x) = T_(£) .X(x)

In this way X acts as a derivation of the R-algebra C (M) of
smooth functions on M ; that is to say, X is R-linear and

satisfies
X(fg) = (Xf).g + £.Xg : (1)

for f,g € Cm(M) ; this is just the expression, in the present
context, of the rule for differentiating a product of two func~
tions. Conversely, each derivation of Cm(M) arises 1in this
way from a unique vector field, and we may therefore identify X
with the derivation it defimes.

Now let X and Y be vector fields (or derivations) on M,
Then XoY : Cm(M) > Cm(M) is not a derivation, but the Lie

bracket

e W X

[X,Y] =XeY - YoX |

always is (just check that (1) is satisfied). It follows that

of a Lie algebra over R : it is a (usually infinite-dimensional)
vector space over R , equipped with a 'Lie bracket' [X,Y]

which is R-bilinear and anticommutative, and in addition

nn

gatisfies the 'Jacobi identity’

[x,[Y,z11 + [Y,[2,X1]1 + [Z,[X,Y]]l = 0.

2. The Lie algebra of a Lie group

A Lie group G 1is a smooth manifold which is also a group,
the two structures being compatible: that is to say, the map-
pings m : GxG » G and i : 6+ G defined by multiplication

and inversion (m(x,y) = xy, i(x) = x_l) are smooth.

_Examples

1. Any discrete group may be regarded as a Lie group (of di-
mension O ).

2. The additive group of R" (or of any finite-dimensional
real vector space) is a Lie group. Such a group is called a
vector group.

3. The circle group T = R/Z is a Lie group. The n-dimensional
torus T% = (R/)T is a Lie group.

4. The general linear group GL(n,R) of invertible real nxn
matrices is an open submanifold of the space M(n,R) = an of
all nxn matrices, since it is the complement of the hyper-
surface det X = 0 . Hence GL(n,R) is a L{é group, of di-
mension n2 . It is not connected but has two components, cor—
responding to positive and negative determinant. The identity
component, consisting of the matrices X with det X >0 , is
denoted by 6L (n,R) .

More intrinsically, if V 1is a real vector space of dimen-
sion n , the group GL(V) of invertible linear transformations
of V is a Lie group, isomorphic to GL(n,R)

5. Likewise OGL(n,C) , the group of invertible complex nxn
matrices, is a (complex) Lie group, of complex dimemsion n2
Unlike GL(n,R) , it is connected.

6. Let H denote the division ring of quaternions. Then
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GL(n,H) is a (real) Lie group of dimension lmz .

For each x € G , let >\x : G+ G denote left translation

by x :

AL =xy .

Clearly )\x is a diffeomorphism of G , its inverse being )‘x‘l'
Let X be a vector field on G . We say that X is left-

invariant if X commutes with left translations, i.e. if J

XoAx= T()\x) oX

for all x € G . If we regard X as a derivation, left-

invariance is expressed by

(Xf) o hx = X(f o Ax)

for all f e C(G) and xe G . It follows immediately that
the space of left—invariant vector fields on G 1is closed under
the Lie bracket, and is therefore a Lie algebra ¢ = Lie(G) ,
called the Lie algebra of the Lie group G .

Each X € g is determined by its value X(e) € Te(G) at

the identity element e of G , because
X(x) = (Xo )\x) (e) = T()\X)X(e) .

Conversely, each tangent vector £ ¢ Te(G) determines a left-

invariant vector field X, on G by the rule

g
. XE(X) = Te(lx)E .

Consequently g may be identified with Te(G) , the tangent i

space to G at the identity element e . In particular it
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follows that dimg = dim G .
We may also remark here that the tangent bundle T(G) of a

" Lie group G 1is trivial, i.e. is isomorphic (as a bundle) to

GxTe(G) . Indeed, the mapping (X,£) - Xg(x) is an isomorphism
of GXTe(G) onto T(G) .

Now let H be another Lie group and let ¢ : G+ H be a
smooth homomorphism; let g = Te(G) , b = Te(H) The tangent

map Te(q:) : g+ b is called the derived homomorphism of ¢

and is denoted by ¢, . It is a homomorphism of Lie algebras,
i.e. we have ¢,[X,Y] = [¢*X,¢*Y] for X,Yeg. e
_Examples

1. If G =R, then g =R and [X,Y] =0 for all X,Ye g.
For each X ¢ g, regarded as a derivation of Cw(Rn) , is of
the form X = igl a]._a/axi , with constant coefficien;s a, 3

any two such derivations clearly commute, because 3 /axiaxj =
az/axjaxi on smooth functions.

2. Let G = GL(n,R) . Define a : g > M(n,R) by
Ot(X)iJ- = (Xxij)(ln) (1 <i,j <n)

where I is the unit matrix (the identity element of G )
and xij : G >R assigns to each matrix in G - its (i,j)
element. Then a 1is an isomorphism of vector spaces and
a[X,Y] = a(X)a(Y) - a(¥Y)a(X) . The Lie algebra g¢l(n,R) of
GL(n,R) 1is therefore canonically identified with the Lie
algebra of all nxn matrices. Likewise with C or H in
place of R .

3. If V 1is a real vector space of dimension n (so that
V= Rn) , the Lie algebra of GL(V) (¥ GL(n,R)) 1is denoted by
gl (V) . As in Ex.2 we may identify gl(V) with the Lie al-
gebra of the ring End(V) of all linear transformations of V.
4. If G 1is an abelian Lie group, then ¢ is an abelian Lie

algebra, i.e. [X,Y] =0 for all X,Y € g
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Remark. We could of course have started with right-invariant
vector fields. However, the inversion i : x +—x_1 inter-

changes right and left, and we get nothing new.

3. The exponential map

The usual exponential function e* is a smooth mapping fromi
R =gI1(1,R) onto GL+(1,R) , the multiplicative group of posi~§
tive real numbers. More generally, if X is any real nXxn |
matrix, the exponential series ? X" /n! converges in the
space M(n,R) of nxn matricegj and its sum e: = exp (X) isé
invertible (with inverse e_X ) and has positive determinant ;
(namely etrace X) . Hence X > eX is a smooth function on .
M(n,R) = gl (n,R) with values in GL+(n,R) . These examples ang
particular instances of the exponential map, which is defined :
for any Lie group G , and is a smooth mapping of the Lie al-
gebra ¢ into the group G .

The definition runs as follows. A one-parameter subgroup ofjl
G 1is a smooth homomorphism u : R > G . Its derived homomor- E
phism u, = To(u) is a linear mapping of R into g , the Liej
algebra of G . It is a consequence of the theorem of existenc{
and uniqueness of solutions of linear ordinary differential f
equations that the mapping u > u,(1) is a bijection of the seg
of one-parameter subgroups of G onto the Lie algebra g : for
each X € ¢ there exists a unique one-parameter subgroup

ug R » ¢ such that ux*(l) = X . The exponential map
exp. 1 g + G 1is now defined by

expG(X) = ux(l)

We have exp(tX) = ux(t) for all t € R, so that
exp(sX)exp(tX) = exp((s+t)X) .
The exponential map is a smooth map whose derivative at

0e€¢ g is 1y » the identity mapping of g . Hence, by the

inverse function theorem, exp 1s a diffeomorphism of some

QA

open neighbourhood of O in ¢ onto an open neighbourhood of

e in G ; that is to say, it provides a chart of G around

" - the identity element. From this it follows that, if G 1is

connected, the image exp(g) of the exponential map generates
¢ (although in general exp : g -+ G 1is not surjective, except
in the cases where G 1is compact or abelian (and comnected)).

For XY e g and t € R we have
exp(tX)exp(tY) = exp(t(X+Y) +0(t2)) , (1)
[exp(tX),exp(tY)] = exp(t’[X,¥]+0(t>)) (2)

(where on the left-hand side of (2) the bracket is the commutator
[x,y] = xyx—ly_1 in G ). Thus, under the exponential map,
multiplication in G corresponds approximately to addition in
g , and commutator formation in G corresponds approximately to
the Lie bracket in g .

If G 1is-abelian, exp, is additive, and therefore a homo-—
gorphism of the vector group g 1into G .

If ¢ : G>H 1is a smooth homomorphism, then we have
¢ ° exp. = eXpy °d,
(naturality of exp ).

4, The adjoint representation

Let G be a Lie group, g its Lie algebra. For each
Xe€ G, let Int(x) : g > xgx—1 be the inner automorphism of
G defined by x . Int(x) 1is a smooth automorphism of G ,

and its derived homomorphism is denoted by Ad(x) or AdG(x) :
Ad(x) = Int(x)* g+ g
is an automorphism of the Lie algebra g , a fortiori of the
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vector space g . Since Int(x) oInt(y) = Int(xy) , we have
Ad(x) ° Ad(y) = Ad(xy) ; also Ad(x) varies smoothly with . x

and therefore
Ad : G » GL(g)

is a2 smooth homomorphism of G into the general linear group

of g , called the adjoint representation of G .
If G is connected, the kernel of Ad is the centre of ¢,
The derived homomorphism of Ad is denoted by adg or ad :Si
Ad, = ad : g > gl (q)

is a Lie algebra homomorphism of ¢ into gl(g) , called the

adjoint representation of g . More directly (and without

reference to G ), ad g may be defined by

(ad X)Y = [X,Y]

for X,Y € g . That [ad X, ad Y] = ad[X,Y] is just a re-
statement of the Jacobi identity (§1).

Let b be a Lie subalgebra of § . The normalizer NG(b)
of b in G is the group of all x € G such that Ad(x)hc}h,
and the centralizer ZG(b) of b in G is the group of all
X € G such that Ad(x)|p = lb . Likewise, the normalizer
Ng(B) of b in g 1is the subalgebra of all X ¢ g such that
ad(X)pc b, and the centralizer Sg(b) of H in g is the
subalgebra of all X € g such that ad(X)|h=0 . Nc(b) and
ZG(b) are closed subgroups of G and hence (§5) are Lie groups. jy
The Lie algebra of NG(h) (resp. ZG(b)) isglg(b) (resp.39(b))}

Let g be a (finite-dimensional) real Lie algebra, and con-

sider the polynomial in t

n .
det(t-ady(0) = ] d. (0t (X e g)
i=0 ~
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of degree n = dim g . The di are polynomial functioms in

g . The smallest integer & such that d2 # 0 1is called the
rank of g , and an element X ¢ g is said to be regular if
dl(x) # 0 . The set g' of regular elements in ¢ 1is there-
fore the complement of a real algebraic variety in ¢ , and
hence is a dense open subset of g .

These definitions have global counterparts. Let G be a

comnected Lie group, and consider the polynomial in t

n .
det(t+1-Ad (x)) = ] D (0t (x € G,
i=0 *

. of degree n = dim G . The Di are real analytic functions

on G . The least integer & such that D2 #z 0 1is called the
rank of G , and an element x € G is said to be regular if
Dl(x) # 0 . We have rank(G) = rank(g) , where g is the Lie
algebra of G . The set G' of regular elements of G is a
dense open subset of G , stable under inner automorphisms,
whose complement has measure zero with respect to (left or

right) Haar measure on G .

5. Subgroups and subalgebras

By a Lie subgroup of a Lie group G we mean a (locally
closed) submanifold H of G which is also a subgroup of G.
It is almost immediate that H is a closed subgroup of G and
a Lie group. The converse of this result is also true, but
harder to prove: every closed subgroup H of a Lie group G is
a submanifold of G (and therefore a Lie subgroup of G )
(E. Cartan's theorem). The Lie algebra § of H consists of

all X e g such that exp(tX) e H for all te R .

Examples
1. The special linear group SL(n,R) , consisting of the real
nxn matrices with determinant 1 , is closed in GL{(n,R) ,

hence is a Lie group. 1Its Lie algebra s1(n,R) consists of
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the X € gl (n,R) with (because det(ex) = gtTace

Likewise with C

trace X = 0
in place of R .
2. Let K be any one of R, C or H . Let X denote the

conjugate of X € K (so that x =x if K = R ). Let ‘U(n,K)é
1

denote the group of all X ¢ GL(n,K) such that XX© = 1. Then?
U(n,K) 1is a subgroup of GL(n,K) , and is closed because it jg *

defined by the polynomial equations

n N f

] x % : :
k=1 ik™ jk 1] i
hence by Cartan's theorem is a Lie group. These equations alsg °
imply that I lx.jl2 =mn , so that U(n,K) 1is a bounded sub— ?

set of M(n,ijJ, a;d is therefore compact. Hence U(n,K) 1is g L
compact Lie group, and its Lie algebra comsists of all :
X € M(n,K) such that X+%° = 0, i.e. such that X is skew-
Hermitian (or skew-symmetric, when K = R ).

(i) When K =R, U(n,K)

has two components (corresponding to determinant +1 and

is the orthogonal group 0(n) , which
-1).
The special orthogonal group S0(n) » Consisting of the orthog-
onal matrices with determinant +1 » is a compact connected Lie
group. Its Lie algebra so(n) consists of the real skew-—
nxn matrices of trace 0 .

U(n,K)

symmetric
(ii) When K =C , is the unitary group U(n) , which
is connected. The special unitary group SU(n) , consisting of
X € U(n)

the unitary matrices with det X =1, is a closed

subgroup of U(n) Its Lie-

and therefore also a Lie group.
algebra su(n) consists of the complex skew-Hermitian n xn
matrices with trace Q . '
(iii) When K = H , U(n,K)
Sp(n) .

If H is a Lie subgroup of ¢ » the Lie algebra p of H

is the quaternionic unitary group

is a subalgebra of the Lie algebra g of ¢ .

h of ¢
arily the Lie algebra of a Lie subgroup of G

Conversely,
however an arbitrary Lie subalgebra is not necess-

. What is true
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- such that

h of g there exists a connec-

and a smooth injective homomorphism j:H - G

is that to each Lie subalgebra
ted Lie group H
jx 1is an isomorphism of the Lie algebra of H onto
(8, j)
j(H) 1is the subgroup of G generated by expG(h)

p ; and the pair is unique up to isomorphism. The image
b

The comnec-
ted Lie group H , identified with its image in G , is called
the immersed subgroup of G corresponding to b ; in general it
is not closed in G , and the topology of the Lie group H is

not the topology induced from G

2 _ o2
Example. Let G be the torus T , so that g =R" ; let

h = R , embedded in Rz by x - (x,0x) where 6 1is an ir-

rational number. Themn H =R, and j(H) < ¢ 1is a curve which

winds round and round the torus infinitely often, so that j(H)

is dense in G .

The correspondence between subalgebras B of ¢ and immersed

subgroups H of G has all the properties that one could

reasonably expect. The centralizer (resp. normalizer) of H in

G is equal to the centralizer (resp. normalizer) of h in G .

is conmnected, H 1is normal in G if and

(i.e. ?tq(b) = g ), and the centre
¢ (i.e. 34(9) .

In particular, if G
only if § 1is an ideal in g
C of G has Lie algebra ¢ , the centre of
(generated by

Again, if G is connected, the derived group DG

all commutators [X,y] ) is an immersed subgroup which corre-
sponds to the derived algebra Dg = [g,0] of g , spamned by

all brackets [X,Y] It follows that a connected Lie group is
solvable if and only if its Lielalgebra is solvable (i.e.

Drg =0 for some r 21).

Example. Let g -be a finite-dimensional Lie algebra, Aut(g)
Aut(g) 1is a closed (indeed al-

Its Lie

its group of automorphisms.
gebraic) subgroup of GL(g) , hence is a Lie group.

Der(g) of derivations of g , a

algebra is the algebra
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subalgebra of gl(g) .

The image ad(g) of g wunder the adjoint representation
(§4) is a subalgebra of Der(g) To it there corresponds an
of ¢ ; it is generated by the automorphisms exp(ad X), X € g;
If G 1is a connected Lie group with ¢ as Lie algebra, then E
Int(g) 1is the image of G under the adjoint representation
(because exp(ad X) = Ad(exp X) by naturality of exp ).

If ¢ 1is semisimple, Int(g) is the identity compoment of
Aut(g) , and ad(g) = Der(g) (i.e., every derivation of g ig'

inner) .

6. Quotients
Let G be a Lie group, H a closed subgroup of G . The

quotient set G/H , whose elements are the cosets xH = x of

|
i
;{{
¥
g
vt

H in G , then carries a unique structure of a smooth manifold ©
such that the projection p : x >x of G onto G/H is smooth,

and such that a mapping f of G/H into a smooth manifold M

is smooth if and only if fop : G - M 1is smooth. The tangent';
space to G/H at the image e of e is a/p = Te(G)/Te(H) , *
from which it follows that dim(G/H) = dim G - dim H . More-
over, the projection p has a smooth local cross-section de-
fined on an open neighbourhood of & , from which it follows
that locally G looks like the Cartesian product of H with
G/H , or more precisely that G is a smooth bundle over G/H
with fibre H .

If H 1is a closed normal subgroup of G , then the group
structure and the manifold structure on G/H are compatible,

i.e. G/H is 'a Lie group. )

Examp]e. If G is a connected Lie group, then Ad(G) ¥ G/2Z

where Z 1is the centre of G .

i
-
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7. Homomorphisms and local homomorphisms

Let ¢ : G >H be a smooth homomorphism of Lie groups.

- The kernel N of ¢ is closed in G , hence is a Lie subgroup

of G , whose Lie algebra is the kernel of the derived homomor-
phism ¢, : g~ h . The image ¢(G) , on the other hand, need
not be a closed subgroup of H but (provided that G is con-
pected) is the immersed subgroup of H corresponding to the

;ubalgebra ¢,(g) of B
smooth homomorphism G/N - H induced by ¢ .

The immersion is the injective

For example, the one-parameter subgroups of G (%3) are

immersed subgroups.

Let G and H again be Lie groups. A (smooth) local homo-
morphism from G to H is a smooth mapping ¢ of an open
neighbourhood U of the identity element in G , with values
in H , such that ¢(xy) = ¢(x)¢(y) whenever X%, y and Xy
all lie in U . If ¢ 1is also a diffeomorphism of U onto an
open neighbourhood of the identity element in H , then ¢_1
is a local homomorphism from H to G , and ¢ is said to be a
local isomorphism of G with H .

Each local homomorphism ¢ from G to H has a derived
homomorphism ¢, = Te(¢) : g> b, which is a homomorphism of
Lie algebras; and ¢ 1is a local isoqorphism if and only if ¢,
is an isomorphism.

Conversely, if u : g > b is a homomorphism of Lie algebras,
there exists a local homomorphism ¢ from G to H such thaf
u=¢, , and moreover .¢ is essentially unique (in the sense
that if u = ¢1* = ¢2* , then ¢1 and ¢2 coincide on some
open neighbourhood of e in G ). It follows that two Lie
groups G,H are locally isomorphic if and only if their Lie
algebras g , h are isomorphic.

If now G is connected and simply-connected, every local
homomorphism from G to H has a unique extension to a (global)

smooth homomorphism of G into H (monodromy theorem). Hence
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the smooth homomorphisms of a connected and simply—connected

Lie group G into any Lie group H are in one-one correspon~

dence (via the derived homomorphism) with the Lie algebra homo-*q -

morphisms of g into b .

8. The universal covering group
Let G be a connected Lie group. Then G has a universal
covering group G , which is a Lie group, characterized up to

isomorphism by the following properties: (i) there exists a

surjective smooth homomorphism p:G - ¢ with discrete kernel-g
' L

(ii) [ is connected and simply-connected. The kermel D of
P 1is isomorphic to the fundamental group wl(G) » and is a
subgroup of the centre of G (because for each d ¢ D the
mapping x - xdx—1 of G into D is continuous, and there-
fore constant). Hence D » and therefore also nl(G) , 1s
abelian.

The derived homomorphism Py :Lie(E) + Lie(G) = g is an
isomorphism. Hence the connected Lie groups with g as Lie
algebra are all obtained from G by factoring out a discrete
subgroup of the centre of ¢ .

Finally, every (finite-dimensional) Lie algebra g is the
Lie algebra of some connected Lie group G , hence also of itg
universal covering G . In this way is established a one—one
correspondence between isomorphism classes of finite~dimensional
real Lie algebras and isomorphism classes of connected and
simply-connected Lie groups. Thus, for an arbitrary Lie group
G , the only information about G that is not captured by its
Lie algebra g is (i) properties that depend on the different
connected components, (ii) properties which depend on different

covering groups, i.e. on nl(G) .
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1I. Semisimple Lie Algebras

1. Generalities on Lie algebras

Many of the notions of group theory have counterparts for
Lie algebras. Let g be a finite dimensional Lie algebra
(over any field of characteristic 0 ). If a , b are vector

subspaces of g , we denote by [a,b]l the vector space

gpanned by all [X,Y] with X ea and Y e b . A vector

subspace a of g 1is a subalgebra of g if [a,a] < a, and
an ideal in g if [g,a] < a : these are the counterparts of
the notions of subgroup and normal subgroup, respectively. If
@ is an ideal in g we can (as in other algebraic contexts)
factor it out to form the quotient algebra g/a . If a and
b are ideals in g , then [a,b] is also an ideal.

The derived series of g 1is the decreasing sequence of
ideals (1Fg)r20 , where Dog = g and Dr+1g = [IFg,IFQ] .
Just as in group theory, if iDrg =0 for some r , the Lie
algebra ¢ 1s said to be solvable.

The lower central series of g is the decreasing sequence
of ideals ((ng)rzo , where €% =g and Grﬂ'g = [g,@rg].
The upper central series of ¢ 1is the increasing sequence of
ideals (Erg)rzo , where €,9=0 and ¢r+1g/6?g is the
centre of g/G} g . Just as in group theory, we have Grg =0
for large r 1f and only if (Srg =0 for large r , and the
Lie algebra ¢ 1is then said to be nilpotent. An equivalent
condition is that adgX should be nilpotent for all X e g .

Every nilpotent Lie algebra is solvable, and a Lie algebra
g is solvable if and only if its derived algebra Dg= [g,g]
is nilpotent.

The Killing form on ¢ 1s the symmetric bilinear form Bg

defined by

Bg(X,Y) = trace(ad X)(ad Y)
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If g 1is nilpotent, By is identically zero; conversely, if

Bg =0 then g is solvable.

Let g again be any finite dimensional Lie algebra. Then
¢ has a unique maximal solvable ideal (for if a and b are L%'
solvable ideals, then so is a+ b). This ideal t is callegq  §
the radical of g . It is also the orthogonal complement of i
the derived algebra Dg with respect to the Killing form.

If r =0, that is if ¢ has no nonzero solvable ideals,
then g 1is said to be semisimple. An equivalent condition ig
that g is a direct product of simple Lie algebras (a Lie al-
gebra is simple if it has no nontrivial ideals and is not
abelian). Yet another equivalent condition is that the Killing :
form Bg is nondegenerate.

If g 1is again any finite-dimensional Lie algebra, r its 4

radical, then there exists a subalgebra 1 of ¢ such that
g =141 (1) :

(direct sum). | is called a Levi subalgebra of g , and (1)

is a Levi decomposition. The algebra [ is semisimple, be-
cause it is isomorphic to ¢/t , which has zero radical. The
algebra | in (1) is not uniquely determined, but any two are
conjugate in ¢ wunder the adjoint group Int(g) (I, §5). Also,
the Levi subalgebras of ¢ are the maximal semisimple subal- |
gebras of g .

If the radical r is the centre 3 of g , the Lie algebra
8 is said to be reductive. An equivalent condition is that
the adjoint representation adg should be completely reducible,
If g is reductive, its derived algebra Dg is semisimple, and
g is the direct product of Dg and 3 . Hence the reductive
Lie algebras are just direct products of abelian and semisimple

Lie algebras, and we shall therefore concentrate on the latter.

Examples. g!(m,R), gl (n,C), u(n) are reductive but not [
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semisimple. $1(n,R), s1(n,C), su(n) and so(n) are semi-

" gimple (e.g. by computing the Killing form explicitly).

In particular, if g 1is semisimple, the centre of ¢ is
zero and hence the adjoint representation embeds g in g¢lI(g),
the Lie algebra of GL(g) . From the results of Chap. I, §5

it follows that g 1is isomorphic to the Lie algebra of an

‘immersed subgroup G of GL(g) . Hence every semisimple real

Lie algebra is the Lie algebra of some commected Lie group.

One can then use Levi's theorem above to show that every finite-
dimensional Lie algebra over R 1is the Lie algebra of a con-
nected Lie group.

If g 1is a real Lie algebra, = g@RC = g+1ig its com-

g.
plexification, then ¢ is semisimpse if and only if 8¢ is
semisimple. For the matrix of the Killing form, relative to a
basis of g , is the same for g, as for g . If g is
simple, then ¢ c is either simple or is the product of two
isomorphic simple algebras.

If g is a complex Lie algebra, let gR denote g re-—

‘garded as a real Lie algebra. If g 1is semisimple (resp.

simple) then so is gR .  We have (gR)C S gxg . We call
gR the realification of g .

A subalgebra 8, of gR is a real form ;f the complex Lie
algebra g if g = g, * ig) . The real simple Lie algebras
are either real forms or realifications of complex simple Lie
algebras. We shall begin with the structure theory of the

complex Lie algebras.

2. Cartan subalgebras

Let g be a real or complex semisimple Lie algebra. An
element X € g 1is semisimple if the linear transformation
ad X: g> g 1is semisimple (i.e. diagonalizable over C ). A
Cartan subalgebra of ¢ 1is a maximal abelian subalgebra of ¢

consisting of semisimple elements; equivalently, it is the
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centralizer in g of a regular element of g (Chapter 1, §4) ?

Now let g be complex. The importance of the Cartan sub-
algebras for unravelling the structure of g lies in the
fundamental fact that they are all conjugate under the adjoint.;.
group Int(g) (Chapter I, §5). (As we shall see later, this
is not in general true for real semisimple Lie algebras, and

1s one of the reasons why their structure theory is more
plicated.)

com-

The (complex) dimension of a Cartan subalgebra of g is

equal to the rank of ¢ , as defined in I, §4
it by 2 .

- We shall denote ?

Example. If ¢ = si(n,() » the diagonal matrices in g form

a Cartan subalgebra. Hence the rank of s1(n,C) is n-1

3. Roots

Until further notice, g 1is a complex semisimple Lie al-

gebra. Since all the Cartan subalgebras of ¢ are conjugate
by >

there is no harm in choosing one, say b , once and for all

Since B is abelian and the ground field C ig algebraically

closed, the adjoint i 1
N joint representation adg » restricted to b,

splits up as a direct sum of one-dimensional representations.
In other words, if b* 1is the vector space dual of § , and
if for each a ¢ b* we denote by ga the subspace of all

X e€g such that ad(H).X = a(H)X for all H ¢ b

is the direct sum of the g®

s then g
- Two such subspaces ga,gB are

orthogonal with respect to the Killing form B unless atf = 0

o .
Moreover, ¢ 1s equal to b , because b

izer in g

is its own central-
It follows that § is orthogonal to all the qa

s
@ # 0, and therefore the restriction of B to b remains #
nondegenerate.
Since g 1is finite-di i ini
. ite-dimensional, only finitely many of the
8 are monzero. If o #0 and ¢% =z o » then o 1is said to
be a root of g (relative to the Cartan subalgebra b ) and L
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ga the root-space of a . If o 1is a root, so is -a (other-

V wise ga would be orthogonal to all of g , contrary to the

nondegeneracy of B ). For each root a , we have dim ga =1.
If H 1is a general element of b , the complex numbers

o(H) (a a root) are the nonzero eigenvalues of the linear

transformation ad,H , i.e. they are the nonzero roots of the

8
characteristic equation det(A-ad H) = 0 ; this is the reason

"for the terminology.

We denote by R or R{g,h) the set of roots: it is a fi-

nite subset of Hh* . We have then a direct decomposition of

q :

g =9+ ] ¢ w
aeR

called the root-space decomposition of g relative to § .

The roots span a real subspace V of dimension & in bh* ,
so that Hh* 1is the complexification of V . We have already
observed that the Killing form B remains nondegenerate in
restriction to b , hence defines an isomorphism A - HA of
hb* onto B , and a bilinear form <A,pu> = B(HA’Hu) on ?* .
It turns out that the restriction of this to V 1is real-
valued and positive—definite, so that V acguires the struc-
ture of a real Euclidean space. Let bR denote the vector
space spanned by the Ha » o € R; then b is the complexi-
fication of bR and V 1is the dual bﬁ of bR .

In this way we have constructed from g a finite set R
of nonzero vectors in the Euclidean space V . This set R
is called the root-system of g : up to isomorphism, it is in-
dependent of the choice of B , and therefore depends only on
g . It may be thought of as in some sense the 'skeleton' of
q and it determines g up to isomorphism. More precisely,
there is the following isomorphism theorem: if ¢' 1is another
complex semisimple Lie algebra; b' a Cartan subalgebra of

g' ; R' the root system of ¢' relative to h' ; and if
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. ¢ s . .
¢: b > b' is an isomorphism which induces a bijection of R!

onto R, then ¢ can be extended to a Lie algebra isomorphisy
of ¢ onto g'

Example. 1Let g =sl(n,C) and let B be the Cartan subalgebr,

#

consisting of the diagonal matrices with trace O . Let E

- . . 13 1
(1 <i,j <n) be the matrix with 1 in the (i,j) place and
0 elsewhere; also let e (1 i <n) be the linear form
which maps each diagonal matrix to its ith diagonal element.

For each H € § we have

[H'Eij] = (e:]._-ej)(l-l).E].-j

so that .-~ i i ] :
€; ej 1s a root of (g,h) whenever i =z J 5 and since -

g=b+ ) CE,.
izj M
it follows that these are all the roots. The real space V
spanned by the roots has dimension n-1 . TFor example, the
’

roots € € (1 i <n-1) form a basis of V .

4. Geometry of the root system

For each : i
root o € R let W V >V be the reflection in

the hyperplane Va orthogonal to « . Elementary geometry
shows that

w(!(x) =X - <X,(!V>(x

\
for x € V , where o' = 20/<a,0> 1is the coroot corresponding

to «
The root system R has the following properties:

(1) wd(R) = R for each o ¢ R ;

(2) <aV,B> € Z for each pair a,B ¢ R ;

(3) if a,B € R are proportional, then B8 = +q
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We have no space here for the proofs of these various as-

sertions, which may be found in any text on Lie algebras. Let

us however briefly indicate the reason for the integrality

property (2). For each pair of roots o one can choose root-
*a .

vectors X+a € g such that [XQ,X_Q] = HaV , the image of

the coroot av under the isomorphism b* 3 p induced by the

Killing form. The vector space S, spanned by XQ,X_Q and

Hy 1is a Lie subalgebra of ¢ , and the mapping which takes
o
these three vectors respectively to the matrices (g é) ,

o O 1 O
G o @™ Gy
Now a study of the representations of the Lie algebra s! (2,C)

shows that in any representation p the eigenvalues of p(é _?)

is an isomorphism of S, onto sl (2,C)

are integers. Since <av,ﬁ> = B(Hav) is an eigenvalue of
adg(HaV) , it follows that <aV,B> is an integer.

In fact the study of the representations of sl (2,C) ob-
tained by restricting adg to the three-dimensional subalgebras

is the key to the proofs of the results summarized above.

Sa

~ We can now forget, for the time being, about the Lie algebra
g and concentrate on the root system R . Abstractly, R can
be any finite spanning set of nonzero vectors in a Euclidean
space V which satisfies (1),(2),(3) above. The group W gen-
erated by the reflections v, is called the Weyl group (of R,
or of g ); it acts faithfully as a group of permutations of R,
hence is a finite group. Next, the hyperplaﬁes v, cut up v
into congruent open simplicial cones called chambers, and a
fundamental property of R is that the Weyl group permutes the
chambers freely and transitively: that is to say, if we choose
a chamber C , then every other chamber is expressible as wC
for a unique element w € W . The chamber C is bounded by

2 (= dim V) hyperplanes vai = V‘“i (1 <1i<2) . One of
each pair of roots iai » say a. , is such that <o.,x> > 0
for all x € C ; the resulting set of & roots CPERREPL is

called a basis of R , or a set of simple roots., It can also

111




be characterized by the fact that every root o is a linear
combination of the simple roots with integer coefficients,
either all 2 0 or all <0 . The set of bases of R, being
in one-ome correspondence with the set of chambers, is permuteqs
freely and transitively by the Weyl group W . ;
Let eij be the angle between the simple roots ai,aj

Then

2 2 -
Cos B.. = <a.,a.> /<a,,a,><a.,q.> =
ij i’ S R R

£ =

\ v
<(1.,(1,><(1,’(1,>
1 ] 1 ]

1 . g
= Z.mij say, where mij = 0,1,2 or 3 (since by (2) mij muStf

the only possible values

2,
3 s

: i > =
be an integer). Since eij 25T,

are therefore 2T

are orthogonal.

3 5

for the angle eiJ z7 and ETI’ . If:;

m., =0, a. If m.. >0, and
ij i 1j

<ai,ai> > <aj,aj> R : <ai,ai>/<aj,aj> = m]._j

The relative positions of the simple roots may be described

and o,
]

then

by the Dynkin diagram; this is a graph whose vertices are in
one-one correspondence with the simple roots, the vertices cor- )

responding to ai and aj bonds and (if

being joined by mij
mfj > 1) an arrow-head pointing (like the inequality sign) to-
wards the shorter of a and aj

An equivalent method of describing the relative positions of
the simple roots is the Cartan matrix, which is the 2x¢ matrix
It has 2's

and its off-diagonal elements are < O .

of integers whose (i,j) element is a; ;= <a¥,a.>

down the diagomal,
The Cartan matrix and the Dynkin diagram each determine the

other, and either determines R (and hence 8 ) up to isomorphism,
A root system R 1is said to be irreducible if there exists

no partition of R into two non-empty subsets Rl’RZ with each

root in R1 orthogonal to each root in R2 ; this is the case

if and only if the Lie algebra g is simple. Since two simple

roots are orthogonal if and only if the corresponding vertices

of the Dynkin diagram are not directly linked, it is mot hard
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to see that R is irreducible if and only if its Dynkin diagram

js connected.

g =s1(n,C) we may take the simple roots to be

(1 £i <n-1) , in the notation of the Example in

gxample. 1f

= ."E,
o, = €575+

§3. The reflection v, corresponding to the root a = ;7€

3

ini fixed
interchanges e; and €., and leaves the remaining € ,

from which it follows that W 1is isomorphic to the symmetric

group Sn , acting by permuting the e The Dynkin diagram

is a chain

o—O0—oO0—

and the Cartan matrix (aij) has aij =2 1if 1 =3, aij = -1-
if li-jl =1, a5 = 0 otherwise.

5. Classification

The classification of the connected Dynkin diagrams is a

purely combinatorial undertaking, and leads to the well-known
list consisting of the four infinite series Al (L =1, B2
C2 223, D2 (2 2 4)
F4’ G2 , Which will be found in any text

2= 2) and the five 'exceptional’
= 3

diagrams E6’ E7, E8,

on the subject.
Finally, the isomorphism theorem of §3 is complemented by an

existence theorem, which states that every Dynkin diagram arises

from some complex semisiﬁple Lie algebra g . One constructs

g by writing down genmerators and relations, the relations in-

From all

volving only the Cartan integers aij = <ai,aj> .
this it follows that the isomorphism classes of complex simple
Lie algebras can be labelled by the same symbols Al""’GZ
used above.

s[(2+1,C) . The

Examples. The simple Lie algebra A2 is

other 'classical' Lie algebras Bz,Cz,D2 may be briefly de-
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of ¢ and real forms of g .

el
Now if g8, is the Lie algebra of a compact Lie group G ,

j

scribed a
s follows., Let E be a complex vector space of fing

di i
lmension n , let f bpe a nondegenerate symmetric or skey-
Symmetric bilinear form on E » and let ¢ be the Lie subal
al-
gebra of gl (E) consisting of all X ¢ 81(E) such that
a

the Killing form of g, is negative semi~definite (and negative

is zero). For G acts on g

A e

definite if the centre of 8,
via the adjoint representation AdG ; since G 1is compact,

Fago

f(Xu, V) + f(u XV) 0 fOI all u,v € E =B
» > . Then g
2 lf

n=22+1 and f 1is g i
ymmetric; = i =
> 8 CZ if n=2¢ and £ is. there exists an Ad-invariant positive definite quadratic form

P

R

(take an arbitrary positive definite form, and

skew-symme tric; and g = Dz if n =28 and f is s i
In more concrete terms, B g S0 (2041,0) | Ymmer:rlc.?F 9 on 9? ) '
s (22,C) , where s0(n,C) < 5f(n o ) ’ an DE 1s 5 average it over G ). With respect to a Q-orthonormal basis of
s consists of the skew~ - 9y the linear transformation AdG(x) for each x € G 1is rep-
resented by an orthogonal matrix, i.e. we have AdG: G~ Q(n) ,

s tri . t 4

ymmetric matrices (X+X =0); and Cz is sp(2n,0) < s1(2n,¢)
2 Y ;.

t g —+so(n) and therefore

where n = dim 9, - Hence adg
o

consisting of the matrice
§ X satisfying XJ+gx°
JX" =0, wh
’ €re
is represented by a skew-symmetric matrix (Chapter

i 0 1
| J= [ n
1 (In 0) . ,
' | . each ad X
6. Real forms | 1, 55, Examples). Consequently
- izj(ad %), (ad 0
happen (in f . i

act, as we shall See, 1t always does) that non~ = _ Z (ad X)%. <0,

b ij
1,]

We shall now tak
e up the structure theory of real semisimple B(X,X) = trace(ad X)2

Lie algebr i i
gebras. Here the situation is more complicated: it can

isomorphi .
Iphlc real Lie algebras have the same (or isomorphic) o

om—~
and B(X,X) =0 if and only if ad X =0 , i.e., if and only if

plexificatjons For 1
) ‘L algeb!as 5“’.(11) and
For this reason a semisimple real

| s{(n,R) both
I; g i have s1(n,0) as their complexification, X is in the centre of ¢
18 a complex Lie algep . o’
gebra, a real Lie subalgebra 9, Lie algebra is said to be compact if its Killing form is nega-

of g is a real for . .
mof g if g is the complexification of tive definite. )
Every complex semisimple Lie algebra g has a compact real

q y 1.e, if = + 1 .
o 8 =8, 1g (direct sum). Such a real form g
It may be constructed

determines a mappi
PP1lRg c: g > , n . ;
8 amely Y+iZ » y-iz (Y,ze go). form, which is unique up to isomorphism.

. . a
as follows: with the notation of §3, vectors X, €8 can be

This mapping ¢ has the following properties:
such that for each pair of roots «,8

(1) e is semiili . -
inear, i.e. c(AX+uy) = Ac(X) +pe(Y) for chosen for each root a

| XY e ¢ and A\, p e C H
| (2) ¢ is an involution, {i.e. c2 =1 _: o
(3) e[Xx,Y] = [eX,cY] for X,Ye g, .
r [XG’XB] = Na,BX(!"'B
H if o+g =0,

if o+B € R ,

1 >
| A bijection : with these ropertie alled a
Ject1 c: g g 1th thes Properties is call

conjugation of g Conve
. rsel an : . .
¥» any conjugation c of g de- 0 otherwise,

terl'nlnes uIlquE:Ly a Ieal = = l N = =N .
S b f
u algebra g {X € g . cX X Such 1 1 i satis y B B
’h ere the constants N B are r e,

that = + 1 .
=g, 19, s that is to say a real form of g Hence [
r From these relations it follows that B(XG,XB) =1 or 0 ac-
4

we have a canoni
1cal one—-one c
Oorrespondence betw .
€en conjugations
115
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cording as a+8 =0 or # 0 . Then the elements iHa ’
Xa—X_a s i(Xa+X_a) span a compact real form of g

Another real form of g is easily written down, namely the
real Lie algebra spanned by the Ha and the Xa\ . This form
is called the split (or normal, or anticompact) real form of q
it is not compact. In a sense to be explained later, these ty
(the compact and split forms) are at opposite eXtremes, and ip

general there will be other real forms as well.

7. Examples: real forms of the classical complex Lie algebras
If g =5((n,C) , a compact real form of ¢ is su (n) and
a split form is s!(n,R) . The corresponding conjugations of

9 are respectively X -+ -X° and X - X

If n is even, say n = 2m > another real form of slI (2m,C)

is sl(m,H) = {X eql(n,H): Re(trace X) = 0} . Any quaternionic
matriX may be written as Y + Zj , where Y and Z

matrices, and we can embed s! (m,H) in si (2m,C) by means of

the map

Y z

n: Y+Zj -+ _

-Z Y
the image of 5] (m,H) under n is denoted by su*(2m) , and
is a real form of si (2m,C) . The corresponding conjugation is
X > Jx3°} » where J = n(j)

Apart from s{(m,R) and sl (m,H) , the real forms of the
classical complex simple Lie algebras AJL’BJL’CB,’D!L may all be
described uniformly as follows. Let K be any one of R,C,H,
and let E be a K-vector space of dimension n (a left vector
space if K =H). Let f: EXE + K be a nondegenerate -
Hermitian form, where ¢ = +] (so that f is K-linear in the
first variable, and f(u,v) = em ), and let g(E,f) c al (E)
be -the subalgebra consisting of all X ¢ gI(E) such that
trace X = 0 and
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© for all

are complex *©

£(Xu,v) + f(u,Xv) =0

u,v ¢ E . Let q denote the Witt index of f (namely
the dimension of a maximal totally isotropic subspace of E )
and let p =n-q , so that p 2q 20 a.nd p+q=n.. The in-—
tegers P,q determine f wup to isomorphism. The Lie algebras
g(E,f) , for all legitimate choices of K, €, p and q , to-
éether with sl (n,R) and sl(n,H) , exhaust the real forms of

the classical complex simple Lie algebras.

(a) Suppose first that K =R and ¢ =+1 ., Then -f is

symmetric, and the algebra g (E,f) 1is denoted by sb(p,q) . It

consists of the matrices X € sl (n,R) such that

t
+ X1 =0
IPsqx Psq

I i (n,C) [As
here I =\ P , and is a real form of so(n, .
: P g _Iq' balgebra of so0(n,C) , but the
it stands, so(p,q) is not a su_1 g Y
isomorphic algebra Jp,qsm(p,q)Jp,q is, where Jp,q }_(IO iI]q H
the corresponding conjugation of so(n,C) is X - Ip,q _—

If q =0, then so(p,q) = so(n,0) =so(n) is the compact real
form of so(n,C) . At the other extreme, q = [in] gives the

split form.

(b) Next suppose that K =R, € =-1. Then f is sl.cew— .
symmetric and hence (because f 1is nondegenerate) n 1is even,
say n = 2m , and the index q 1is equal to m . The alg?bra
a(E,f) is denoted by sp(2m,R) : it consists of the matrlce?

X ¢ sI(2m,R) satisfying XJ+JX" = 0. Hence it is_the split
real form of sp(2m,C) , the conjugation being X - X .

(c) Now let K =C . Here we do not need to distinguish be-
tween € = +1 and e = -1 , because if f 1is antihermitian

then if is hermitian. We may therefore assume that f is
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hermitian. The algebra g (E,f) is denoted by su(p,q) : i AE = sl (m+1,H) (Fsu*(2m))

consists of the matrices X ¢ sI(n,C) such that
(if 2 = 2m-1 is odd).

* I XxX+X1I =0 . . c,0
) rhe split form 1is AI; and the compact form is Al’ =su(f+l) .

- >

and is a real form of s1{n,C) , the conjugation being X -» The real forms of BR. (2 22) are
st

—Ip’qX Ip,q . When q =0, we have su(p,q) =su(n,0) = su(n

the compact real form of sl (n,C) .

Bi’q = s0(p,q)

(where p2q20 and p+q=22+l , so that 0<q<g). ,

(d) Let K=H, €=+1 . Then f is a quaternionic Hermiti’ )
The split form is so0(2+l1,2) (q=2) and the compact form is

s0(22+41) (q=0) .

form, and the Lie algebra g(E,f) is denoted by sp(p,q) . TIt:
consists of the matrices X e gI(n,H) satisfying (*), and
under the embedding n of gI(n,H) in ¢1(2n,C) it is a rea The real forms of C, (2 2 3) are

form of sp(2n,C) . When q = 0, we have sp(p,q) = sp(n,0) =}

; R _
sP(n) =u(n,H) , the Lie algebra of the compact group Sp(n) = * Cy = sP(22,R)
U(n,H) , which is therefore the compact real form of sp (2n,C) .3 CH’q
‘ . = 5p(p,q)
(e) Finally, let K=H and € =~1 . Then f is quatern- (where p>=q20 and p+q=2 , so that 0<q=s[ie]).

ionic antihermitian, which since f i d i i : H,0
? € 1 nondegenerate implies The split form is CI; and the compact form is CZ’ =sp(R) =

that the index q 1is [4n] . The corresponding Lie algebra (2,H)
u(L,H) .

(E,f) may be taken t ist of th 1
q y o consist of the matrices X e s (n,H) The real forms of DR, (2 2 4) are

. .=t . .
such that Xj+3jX =0 ; it is denoted by sau(n,H) . Its
image in gl {2n,C) under n is a subalgebra s$0*(2n) of Dl;,q = so(p,q)
s0(2n,C) , consisting of the X € sp(2n,C) such that XJ+JX°

=0, and is a real form of s50(2n,C) , the conjugation being (vhere p2q=0 and p+q=2¢, so that 0=qs)

X+ JX'7 . -

DE =sau(l,H) (¥s0*(22))

To summarize, th 1 f > -

2 e real forms of AJ?, (2 21) are The split form is so (£,2) and the compact form is so (28)
2 .

R (When £ = 4 , we have DIZ = Dz’ 2D

Az = s1(2+1,R)

Ag’q = su{p,q) 8. The Cartan decomposition
Let us return to the general theory. Let ¢ be a complex

(where p2q20 and p+q=42+1, so that O0<qs<[i(e+1)]) semisimple Lie algebra, u a compact real form of g , and

118 119




c, the conjugation (§6) of ¢ defined by u . If ¢ is an
conjugation of g , there exists an automorphism ¢ of g

. -1 .
such that ¢, commutes with dco ; hence to find all real

forms of ¢ , up to isomorphism, it is enough to find all cop-
jugations ¢ of g which commute with ¢ . : ‘}
u t

If ¢ commutes with c,» we have c(u) = u and c(in) = ]
iu. Let T and ip be respectively the +1 and -1 eigen~ 1

spaces of ¢ in u , so that :
|

u=f+ip

(direct sum), and the +1 and -1 eigenspaces of ¢ on iy

are p and 1%, so that

in=p+if

Hence if 8, is the real form of g determined by ¢, we
have
(*) g =1t+p;
t = g, 1" u is a subalgebra of a, and p=g niu is a
o

vector subspace (not a subalgebra) such that

(i) the Killing form Bq is negative definite on f and

* L - 3 .o
positive definite on p ;

(ii) the map CCL= ¢, =0: Y+Z »Y-Z (Yet, Zep) is
an automorphism of g

Yo

A direct decomposition (*) of 9, » constructed as above
from a compact real form y of g such that c commutes
. - u
with ¢ , is called a Cartan decomposition of the real Lie al-
gebra 8, > and 8 1is a Cartan involution of 9, The Cartan
decomposition is determined by the involution 8 » since f and
p are the +l and -1 eigenspaces of 6 in q_ . We have

Yo

[t,p] < p and [p,plc ¥, and f and p are orthogonal with
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respeCt to Bgo .
If 8 1is any involutory automorphism of go , the bilinear

form <X,Y>5 = -Bg (X,8Y) 1is symmetric, and 6 is a Cartan
Yo
jnvolution if and only if <X,X>e is positive definite.
The importance of the Cartan decomposition is that it is

unique up to conjugacy: if 8, = t'+p' is another Cartan de-—

composition, there exists ¢ ¢ Int(go) such that §f' = ¢(1)

‘and p' = ¢(p) .

Define the Cartan signature (some say Cartan index) s of

g to be the signature of the real quadratic form Bg i.e.
o o

s =dim p -~ dim ¥ .

Then we have

~dim g £ s < rank g

s

-dim g <=> 9, is compact,

and s
s = rank g <=> 8, is split.

Examples '
1. For the compact real form we have p =0, ¥ = 8, and 9

is the identity map. For the split real form of g , spanned

by the Ha and the Xa (86), t 1is spanned by the Xa-X_a
and p 1is spanned by the Ha and the Xa-+X_a .

2, For the real forms of the classical complex Lie algebras
listed in §7, in each case 6: X - -X° (= -X" if X is real)
is a Cartan involution. Hence I consists of the skew Hermitian

matrices in g , and p consists of the Hermitian matrices.

9. The Iwasawa decomposition

From now on the emphasis will be on a fixed real semisimple

Lie algebra, which we shall denote by g (rather than g o );
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' Let

algebra, will be denoted by g, (instead of g as heretofore}

a3
Py

g =t+p

be a Cartan decomposition of g > and let 8 be the associateq’

Cartan involution, so that 8 is the identity on ¥ , and minygf

the identity on p . The bilinear form on g i

<X,Y>o = -B (X,67)

is symmetric and positive definite (it coincides with Bg on iﬁ
and with —Bg on f ), hence endows 8 with the structure of i
a finite-dimensional real Hilbert space. For any X ¢ g, the
adjoint of ad X (with respect to this scalar product) is

—ad 6(X) . Hence, with respect to an orthonormal basis of g

ad X 1is represented by a symmetric matrix if X ¢ P , and by a’

skew-symmetric matrix if X e T . It follows that the elements

of ¥ and p are semisimple,
Let @y be a maximal abelian subalgebra of the vector space

P, and let w; be the vector space dual to @y . For each
A e ug let

gA = {Xeg: [H,X] = A(WX for all H e ap} .

Since adg(ap) is a commuting family of self-adjoint linear
transformations of 8 » it follows that 8 1is the orthogonal
direct sum of the subspaces gA - If A =#0 and gA z0 ,
A is said to be a root of g relative to ¢p > and gA is

the root-space corresponding to A . Let § = S(g,ap) denote

the set of roots. Then we have a root space decomposition

g =1+ z gA
AeS
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(orthogonal direct sum); in which 1 1is the centralizer of ap
in g - The set S ¢ ap is called the relative root system
of g (with respect to ap ) ; up to isomorphism, it depends
only on g . However, there are divergences from th? comzlex
case considered in 83, First, S 1is a root system in ap »

in the sense of §4, but need not be reduced (i.e. need not
satisfy condition (3) of 8§4: this means that it may happe§ that
} €S and 2X € S ). Secondly, the dimension m, of ¢ (the
multiplicity of A € S ) may be bigger than 1 . Thirdly, 1

is usually bigger than ap: in fact we have

I = m+ ap
i i i the rcot
where m 1s the centralizer of ap in f . Finally, .
system S does not of itself determine g up to isomorphism;
for this purpose we require a more elaborate combinatorial ob-
ject, which we shall describe in the next section.

+ P
Choose a basis of S , and let S be the set of positive

roots relative to this basis; and write

-2

We have G(QA) = g—x for all A € S (because 8 acts as -1
on a, ) and therefore 6n = no. n and N are nilpotent

subalgebras of g , and we have

g =f+ap+m i
(direct sum); this is the Iwasawa decomposition of g . If
s =ap+n, then s is a solvable subalgebra of g .

In Chapter III we shall see that the Iwasawa decomposition

has a global counterpart, for any connected semisimple Lie

group.




10. The relative root system
We retain the notation of §9. To get more insight into the

relative root system S , we shall compare it with the (absolut

root system R of the complexification of , relative ¢
y 8. ]

a suitably chosen Cartan subalgebra, For this purpose let a bei

Then

anp, and if we?¥

]
B
3

a maximal abelian subalgebra of g which contains ap .

a is a Cartan subalgebra of g ; we have ap =

put a.= ant then

5

a = af+ ay

(direct sum), so that a 1is stable under 6 . The dimension of

Gy is called the relative rank (or split rank) of g .

The complexification § = ac of a 1is a Cartan subalgebra

of 8. - Hence (§3) we have a root-space decomposition of 8.

relative to § :

V]
a =bh+ ) g
¢ aeR ¢

where R = R(gc,b) < b; is the root system of 8 with respect

to h . Here bR. is the real vector space spanned by the Ha’

o e R, as in §3, and in fact

bR = ap+ 1af .

Moreover, ibR = a_ +1a, is a Cartan subalgebra of the compact

T p
form y = f+ip of 8. -

* ..
Let p: bR - a; denote restriction to ap The kermel of

p may be identified with (iaf)* . For each a ¢ R, the re- »

striction p(a) of a to ay is either 0 or is an element

of S Let R be the set of roots a ¢ R which vanish on

ap » or eauivalently such that Hu € ia Then R_ is a root
o

e
. . * .
system in (1af) (except that it may span a proper subspace

of (iaf)*) >, and is the root system of the complex reductive
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The projection p maps R-R_o

Lie algebra m_ (where m is the centralizer of ap in )

relative to its Cartan subalgebra (uf)c : we have another root-

space decomposition

+ ) g°

m = (af)
aeR  ©
o

c - c

S , and for each X ¢ S
o € RR
o

onto

the multiplicity m, 1is equal to the number of roots

A
pla) = A .

Let c¢ be the conjugation of defined by g , so that
g 8,

such that

c(X+1Y) = X-iY for X,Ye g . c acts on the root spaces as

follows: for each root a ¢ R define a’ by

a%(H) = a(c(®) (Hep) .

o
Then c(g:) = gZ The mapping a - o’ extends by linearity

. . . *
to an involutory isometry of the Euclidean space bR » under
is the set of roots o ¢ R

a’-a ¢ R for all

which R—Ro is stable, and R0
ae€R.
(R,0) ,
is a reduced root system in a Euclidean space V ,
o(R) =R .

o e"R = o’ ¢ R .

such that 0%+ = 0 . We have

Abstractly, therefore, we are led to consider pairs
where R
is an involutory isometry of V such. that
(R,0)

Let p = }(1+g) , so that »p

and o

The pair is said to be normal if
is the orthogonal projection
with kernel V_ =7V ° . Let R =Rn V_

Then R
o

of V on vV = v°

and S = p(R-RO) is a reduced root system in V0
(but may span a proper subspace of Vo) and S 1is a (not

necessarily reduced) root system in V1 We can choose a
of R Fo =T n R0

+
and such that R+—RZ is o-stable, where R

basis T such that

is a basis of R ,
+ o
and Ro are the

sets of positive roots determined by T respectively.

and T

o
The involution o determines an involutory permutation of
F—Fo as follows:

r-T
o

if a e F—Fo , there exists a unique B €

such that o’ = 8 (mod. ZPO) , and the mapping a - B is
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a permutation of order 2 . We have p(a) = p(B) = !(a+B) ,
and A = p(F—FO) is a basis of the root system S . Finally,
if W(R), W(Ro) and W(S) are the Weyl groups of the root
systems R, Ro’ S, and if W(R)0 is the centralizer of g in
W(R) , then restriction to V1 defines a homomorphism of W(R)
onto W(S) , the kernel being W(Ro) .

Each real semisimple Lie algebra g therefore determines a
normal pair (R,0) , which determines ¢ up to isomorphism.

As described in §4, the reduced root system R may be rep-

N A
-

resented by its Dynkin diagram, the vertices of which represent
the elements of the basis I of R . The action of ¢ may be ki
indicated as follows: the vertices of the diagram which rep—
resent the elements of To are coloured black, the remainder
white, and two white vertices representing elements o,8 ¢ F—Fo
as above, such that p(a) = p(B) , are joined by an arrow V”N.‘
The resulting diagram is called the Satake diagram of g , and

determines g up to isomorphism.

Examples

1. If g is compact we have g=%t, p=0, @y =0, so
that R, =R and S = ¢ . 1In this case all the vertices of
the Satake diagram of g are black.

2. At the other extreme, if g is split, we may take p to

be the vector subspace spanned by the Ha and the xa+x_a (88,
Ex.1l), and @p to be spanned by the Ha 5 thus @y = a and

@y =0, so that R0 = ¢ and o is the identity., 1In this case
all the vertices of the Satake diagram of g are white, and it
coincides with the Dynkin diagram of R (or 8 ).

3. Let g, be a complex semisimple Lie algebra, g = g% its
realification (§1). Multiplication by i is an endomorphism of
g8 satisfying i2 - -1 and [X,iY] = [ix,Y] = i[X,Y] for all
X,Y\e g - Let T be a compact real form of 8y Then

8 =t+it is a Cartan decomposition of ¢ . We may take ap =

it , where t 1is a Cartan subalgebra of f ; then a =t+1it
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is a Cartan subalgebra of g , and is the realification of a

. i tion
Cartan subalgebra bl of 9, - The root space decompositio
of g with respect to Gy is then the same as the root space

decomposition of 81 with respect to bl Hence if we denote

by R1 the set of roots of (gl,bl) , we have R = Rlle ,

R =@ and S = R1 . The Satake diagram of g therefore con-
o ) j _
sists of two copies of the Dynkin diagram of R1 » correspond
ing vertices in the two copies being joined by arrows.

4, TFor a concrete example not covered by Exx.1-3, comsider

g =s!(n,H) (87). Then (58, Ex.2) we may take I =sp(n)

(= u(n,H)) and p to consist of the quaternionié Hermitian

. matrices with trace O . We may then take ay to consist of

the real diagonal matrices with trace 0 , and @ to comsist

of the complex diagonal matrices X with Re(trace X) =0 .
If we embed sl(n,H) in $I1(2n,C) as in §7, then ac =5

consists of the diagonal matrices in s1(2n,C) , and we have

R={e.,-e.: i=3j, 1<1i,j < 2n} in the notation of §3,
1 J I3 . . -
Example. Here R = {ei—ej: li-j| = n} ; hence if we put
c{ = €4y » We may take
L.
r = {ei-el,el-eé,eé-ez,...,en_l—e;,en en} s
= - 1 "
r, = {ei €195 s n sl en}

and the Satake diagram is

® -O —O0O— — 00—

there being n black vertices and n-1 white ones. The rela-

tive root system is non-reduced, of type BCn_1 .
5. For another example, take g = su(p,q) , consisting of all

complex matrices of the form
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where A eun(p), Beu(q), trace A+ trace C=0, and B
is any pxq complex matrix. As in §7, we shall assume p = q

Let H(X,Y,Z) denote the matrix

X 0 Y
0 2 O
Y 0 X

where X,Y,Z are diagonal matrices of sizes q,p-q,q respect~ i

ively. We may take ap to consist of all H(0,Y,0) with Y

a real diagonal matrix; @y

X,2 diagonal matrices, and trace H =0 . Then } = a, con-

to consist of all H(iX,0,1Z) wiﬂl%

i

sists of all H(X,Y,Z) with X,Y,Z complex diagonal matrices

0 I O
-0 0 o
where o = 7 Iq , transforms b into the standard Cartan sub-

(and trace H =0) . Conjugation by the matrix a 0 u) ,

algebra of 8. = sl (p+q,C) . Hence if £j (resp. nj, resp. cj)
is the linear form on § whose value at H(X,Y,Z) 1is the jth
diagonal element of X (resp. Y, resp. 2) , then the roots of
(gc,b) are the differences between pairs of

51+n1,-~.,5q+nq,C1,---,C »& -N ,.-.’El-nl .

P4 'q ¢

We may take the basis T to consist of the differences of con~
* ..

secutive pairs of these p+q elements of § . On restriction

to LI all Ej and Ck vanish; 1if ﬁj is the restriction

the restrictions to ap of the elements of T

of nj to ay,

are therefore

ﬂl‘ﬂzs---,nq_l‘nq,nqsoa---,O,Hq,ﬂq_l‘nq,---,ﬂl‘nz .

12Q

1t follows that the Satake diagram is

Oo—0—

?
At

there being q pairs of white vertices and p-q-1 black ver-

o—O0—

tices. The root system S 1is of type BCq

_11. Cartan subalgebras again

Let g be a real semisimple Lie algebra. By contrast with
the complex case, as we have already observed, it is no longer
true in general that all Cartan subalgebras of g are conju-
gate under the adjoint group Int(g) (unless ¢ is compact);
instead, they form a finite number of conjugacy classes. They
all have the same dimension (namely rank g ), because their

complexifications are Cartan subalgebras of 8. -

Example. Let g =sI(2,R) and let a (resp. b) be the subspace

10 01
o -1 (xesp. (; 4

Cartan subalgebras of ¢ . They cannot be conjugate in g , be-

of @ spanned by ( DR Thgn @ and b are

cause the subgroup exp(a) of SL(2,R) consists of all matrices

(; QA), hence is isomorphic to the additive group R, and in
e

particular is not compact; whereas exp(b) consists of all ma-
( cosf sind

—sind Cose) , hence is S0(2) and therefore compact.

trices
Fix a Cartan decomposition g =f+p, and let 8 be the
associated Cartan involution. As in §10, let a =a,+a, be a

AR

8-stable Cartan subalgebra of g such that ¢, = anp is a

p
maximal abelian subalgebra of the vector space p .
If now b 1is any Cartan subalgebra of g , there exists a

conjugate of p which is 6-stable, i.e. such that

17a




b = bf + bp

where bf= bnt and by=bnyp. The component b, is
called the toral part (or the compact part), and by the
vector part of b . The vector part bp is an abelian sub-
algebra of p , hence is contained in a maximal abelian sub-
algebra of p . By conjugating b , we may arrange that

bp < ap

we can also arrange that bf @y The Cartan subalgebra b

, and then by conjugating again, leaving bp fixed,

is said to be standard (relative to 6 and a ) if these con-
ditions are satisfied.
The classification of Cartan subalgebras up to conjugacy in

¢ can now be reduced to a combinatorial problem, as follows.

A subset E of the root system R (§10) is said to be strongly i
orthogonal if a*B ¢ R for all pairs a,8 ¢ E . Now let b be -

a standard Cartan subalgebra of g . Then there exists a
strongly orthogonal set E in R such that the vectors Ha R
a € E , form a basis of the orthogonal complement of bp in
@, ; moreover E is determined by b wup to conjugacy by the
Weyl group W of R . In this way one establishes a one-one
correspondence between the conjugacy classes of Cartan subalge-~
bras in ¢ and the W-orbits of strongly orthogonal subsets of
the set of roots o ¢ R such that Ha € ap .

The two extreme cases are:
(i) the vector part bp of b is as large as possible: if b
is standard, this means that bp =8y, hence bf = a and
consequently b = a . These are the minimally compact Cartan
subalgebras of g ; they are all conjugate, and they correspond
to E =@ above.
(i1) the toral part bf of b is as large as possible: this
means that b is a Cartan subalgebra of the reductive Lie al-
gebra ¥ . These are the maximally compact (or fundamental)
Cartan subalgebras of g ; again they form a single conjugacy

class. If ¢ itself is compact, they are the only omes.
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Examples

1. ¢ =si(n,R) , f=su(n) , ‘p the space of real symmetric
pxn matrices with zero trace; a = Ty is the space of diag-
onal matrices with trace 0 , 'and @y = 0 . Any strongly or-

thogonal set E 1is, up to conjugacy by W = Sn » of the form

E = {61-62’63_64’""€2k—1_€2k}
where k < in . Hence the number of conjugacy classes of Cartan
subalgebras in sl (n,R) is 1 + [4n] . For O < k < [in] , let

b(k) denote the set of matrices in sl (n,R) which are of the

- form

diag(Xy, Xy, X ,Y)

where X. = ( 21 bi) and Y is a diagonal matrix of size n-2k.
i -bi gy

The b(k) are representatives of the classes of Cartan subal-

gebras.

2. g =sl(n,H) . Here all the Cartan subalgebras are conju-
gate to the algebra a described in §10, Ex.3, since a 1is
both maximally and minimally compact,

3. g =su(p,q) (p 2 q) . Here there are g+l conjugacy
classes of Cartan subalgebras, representative;'of which may be
described as follows.(.?ith the notation of §10, Ex.4, for each
]

j=0,1,...,q let b consist of all matrices in g of the

form

iX O »
0 iz
0 iX

where X,Y,Z are real diagonal matrices of sizes q-j,q~j,

(@ . p@

p~q+2j respectively. Then b yoo are q+l non-
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conjugate Cartan subalgebras of g = su(p,q) ; b(o) is mini-

(q)

mally compact and b is maximally compact,

III. Semisimple Lie groups

1. Semisimple and reductive Lie groups

Let G be a Lie group. The largest connected solvable nor-
mal subgroup of G 1is called the radical R of G . It is a
closed subgroup of G , and its Lie algebra is the radical (II,
§1) of the Lie algebra g of G .

A connected Lie group G 1is said to be semisimple if R =
{e} , or equivalently if its Lie algebra ¢ is semisimple.
Every semisimple Lie group G is equal to its derived group
[G,G] , and the centre of G is discrete. If g 1is simple, @
is said to be almost simple. A connected and simply—connected'
Lie group G is semisimple if and only if it is a direct prod—‘
uct of almost simple groups.

Finally, a connected Lie group is said to be reductive if
its Lie algebra is reductive. Every compact connected Lie group

is reductive.

Examples. SL(n,R), SU(n) are semisimple (indeed almost

simple); GL+(n,R) » U(n) are reductive but not semisimple.

2. Cartan and Iwasawa decompositions
Let G be a semisimple Lie group, g its Lie algebra, and

let

g=1I+yp

be a Cartan decomposition (II, §8) of g . The immersed sub-
group K of G which corresponds to the subalgebra f of g
(IT, 85) is then closed in G , and expG(p) =P say is a
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closed submanifold of G (not a subgroup). We have
G = K.P

and more precisely the mapping (x,Y) - x.exp Y is a diffeo-
morphism of Kxp onto G . This is the Cartan decomposition
of G : it is the global counterpart of the Cartan decompo-
;ition of ¢ . The mapping 68 : xy - xy_l (xe Ky, yeP) is
an involutory automorphism of G , and K 1is its group of
fixed points.

The group K 1is compact if and only if the centre of G is

. finite, In general we have K = KOXV where Ko is a maximal

compact subgroup of G (necessarily connected), and V 1is a
vector group. It follows that G is diffeomorphic to the prod-
uct of K and a vector group, and therefore 1r1(G) = 1r1(K0) .

Next let

g =1+ Gy + 1
be an Iwasawa decomposition (IIL, §9) of g , and let Ap and
N be the immersed subgroups of G which correspond to the
subalgebras a, and n of g . Then Ap and N are closed
subgroups of G , and the exponential map expGT is an isomor-
phism of Ty onto Ap , and a diffeomorphism of n onto N ;
A, is a vector group and N is a nilpotent Lie group. We have

P

G = KAPN
and more precisely the mapping (x,y,z) + xyz is a diffeomor-
phism of KXAPXN onto G . Finally, APN is a closed solv-
able subgroup of G in which N 'is normal. This is the
Iwasawa decomposition of G ; it 1is the global counterpart of

the Iwasawa decomposition of ¢ .
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Example. Let G = SL(n,R) , K = SO(n) .

to be the group of real diagonal matrices with positive elementy

Then we may take Ap

to be the group of uppef triangu~

The manifold P in

(and determinant 1), and N
lar matrices with 1's down the diagomal.
the Cartan decomposition consists of the positive definite sym-
metric matrices with determinant 1 (because if X ep 1is a
exp(X) is symmetric and positive definite),

We have nl(SL(n,R)) = nl(SO(n)) =7Z 1if n =2, Z/2Z2 if

symmetric matrix,
n>2.

3. Maximal compact subgroups %

a maxi-

Let G be a (comnected) semisimple Lie group, Ko

mal compact subgroup of G Then X = G/Ko may be given the
structure of a complete simply-connected Riemannian manifold
If K1

acts on X by left translations as a group of

with negativ2 curvature. is any compact subgroup of

G , then K1
isometries of X , and by a well-known theorem of Riemannian

€ X . This

geometry this action has a fixed point x = xK
means that nyo = xKo for all y € K1 » 1.e. that x_lle c
K .
° -1
G, we have x K.x =K
1 o

subgroups of G are conjugate in G .

In particular, if is a maximal compact subgroup of
P

, and therefore all maximal compact

4. Parabolic subgroups
As in §2 let

g = fT+ag+mn ,

be Iwasawa decompositions of g and G , and assume from now

on that the centre of G is finite (so that K 1is a maximal
M and M* be respectively the

Then M*/M

compact subgroup of G ). Let
centralizer and normalizer of ap (oxr Ap) in K.
acts on ay hence by transposition also on the dual space a;,

and is isomorphic to the relative Weyl group W = W(g,ap) . The

group
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(because both M and A, normalize

in G. P
o

is a closed subgroup of G )

N) and is the normalizer of N and its conjugates
in G are the minimal parabolic subgroups of G .

Warning: the group M (and therefore also Po ) need not be
(However, it has at most finitely many connected com—

of M is

connected.
ponents.) In any event, the identity component M°
the subgroup of G corresponding to the Lie algebra m , the
centralizer of ap in t . Hence the Lie algebra of Po is

meapen= 1+ [ o

A>0

in the notation of II, §9.
Let G = SL(n,R) and let K, A
Then M

Example. N be the subgroups

P

defined in the Example in §2. consists of the diagonal

matrices in which each element is *1 (and determinant equal to

1), hence is a finite group of order 2n—1 ; MAp is therefore
the group of all diagonal matrices in G , and Po = MADN the
group of upper triangular matrices in G . So Po has 2[1‘1

connected components, corresponding to the various choices of

sign for the diagonal elements.

If x e M* , the double coset PoxPo depends only on the

coset xM , that is to say on the image w of x in M*¥/M=W,

so that we may write PoxP0 = PowPo unambiguously. We have

then
G =

U PowP0 (disjoint union).

weW

The group W has a
Axest

This is the Bruhat decomposition of G .

unique element w, which transforms each positive root

1

into a negative root, and Pow Po is a dense open submanifold

1
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of G , whose complement has zero Haar measure. All the double}

cosets PowPo are locally closed submanifolds of G .
The pair of subgroups (PO,M*) is a BN-pair or Tits system

in G . Abstractly, a Tits system in a group G

certain axioms which we shall not reproduce here. The group

H=BnN is normal in N , and W = N/H 1is called the Weyl

group; it has a distinguished set A

For each x € N , the double coset BxB depends only on the

image w=xH of x in W , and is denoted by BwB . It is
then a consequence of the axioms of a Tits system that G has

a Bruhat decomposition

G= u BwB

(disjoint uniomn).
weW

For each subset E of A let WE be the subgroup of W

generated by E . Then PE = BWEB is a subgroup of G , and

the mapping E > PE is an inclusion—-preserving bijection of

the set of subsets of A onto the set of subgroups of G

which contain B . Each group PE is its own normalizer, and

no two of them are conjugate in G . In particular, P¢ =B
and P, =6G. Generalizing the Bruhat decomposition we have
G = U PEwPF (disjoint union)
weWE\W/WF

for any subsets E,F of A .

In the present situation, B is the minimal parabolic sub-

group Po , and N 1is the normalizer M* of Ap in K .
The group H = BnN is M*nP0 =M, and W = M*/M is the

relative Weyl group of G . The subgroups PE and their con—

1
jugates in G are called parabolic subgroups. They form 22
conjugacy classes, where &' = card(A) = dim ay is the relative
rank of g .

1A

consists of ai

of involutory generators,i

L

5. The Langlands decomposition of a parabolic subgroup
We retain the notation and assumptions of §3. As in II,
§10, let S = S(q,ap) be the relative root system of g , and
3 e
1et A& be the basis of S determined by the Iwasawa decompo—
i A * js the set of posi-
gition (in which n = A§S+ g" , where S is e s P
tive roots defined by A ).
Let E be any subset of A, <E> the subsystem of 8
geﬁerated by E . Let gE be the Lie algebra generaged by the
A = then =g .)
root spaces g for A e <E> . (If E A, g :E g
Then gE is a semisimple subalgebra of ¢ If we put
E_LE_E . _
i an and pE =p ngE , then g~ =1 +9p is a Cartan de
" E E . . . _
composition of gE , and ap =ayp ng is a maximal abelian sub
algebra of the vector space P
Let a be the orthogonal complement (with respect to the
E .
E ivalentl a is the
Killing form Bg) of ay in ap Equivalently, E -
intersection of the kernels of the linear forms e E . As1
I1, 8§89 adg(aE) is a commuting set of gelf-adjoint endomor-
’ L]

phisms of g and so we have a root—space decomposition

g =1_ + z gu
E €S
HEE
= XE +nE +T1E
where | is the centralizer of agp in g , and SE=S-<E> ,
H n, = % define
and np = z L9 s Ty ES+ g . Now defi
ueSE ue E

m =IEnf + [IE,XE]np ;
then mp is a reductive subalgebra of g , and we have

(direct sum) .

We shall now pass from the Lie algebra to the group G .

° ° i onnected Lie
Let A%, AE ,LE ,ME ,NE respectively be the con
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groups immersed in G which correspond to the Lie algebras
ag » ag ,IE M LT All these subgroups are closed in @ H
_,E . o_,0
we have Ap = APAE (direct product), and LE = MEAE .
Let oLE g (or Ag)
that LE is the identity component of LE . Put ME(K) =

L.nK , and let ME=ME(K)ME R

E
so that M; is the identity component of ME . We have

LE = MEAE » and the groups LE ,ME and

be the centralizer of g in 6, so

, the centralizer of AE in K

Pp = MpAgNg = LNy
are closed subgroups of @ , and P contains the minimal
E ° for all

» are the parabolic subgroups of G which

E

parabolic subgroup P0 (= P¢) . So the groups P
E of A

P,
o

subsets

contain The Lie algebra of PE is IE-+nE =Pg -

Example.

SL(n,R)

P
(o]

Let us illustrate all this by reference to the group
- As before (§3, Ex.) we take as minimal.parabolic
the group of upper triangular matrices with determinant 1,
K = 50(mn) .

same as the absolute root system R

and we take

The relative root system S 1isg the

» and is of type An—l .

Each subset E 4 may be described by a subset

of the basis

{ml,...,mr} of {1,2,...,n~1} , where mo<my <...<m o,

or equivalently by the sequence

(nl,nz,...,nr+l) = (ml,mz—ml,...,mr-mr_l,n—mr)

of positive integers whose sum is n . Correspondingly we

write each matrix X ¢ SL(n,R) or sI(n,R) in block form:
X = (X..) where X..
1] 1]

dsi,js=

has ni rows and n, columns

r+l) . Then ap (resp. AE) consists of all block
(Xij =0 if 1 2 3j) with Xii = XiIni

and In.x. =0 (resp. each x. > 0 and
1 1 1

diagonal matrices
(1 =<1 < r+l)

n-
Hxil =1). of a

The centralizer ‘E E

consists of all block
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R

(so that (LE : LE)

M.(K) = Ly nK =

s o

=z
t=f

PE

So P

m

diagonal matrices
block diagonal matrices X with trace Xii

E

triangular in the block

The subgroup

E

X with trace 0 , and m consists of

E
=0 (1sisr+l) ,

21 sl(n.,R) . The corresponding groups are
i i

SL(n,R) n (I GL'(n ,B))

i
SL(n,R) n (It GL(ni,R))
i

[o] Zr)

SL(n,R)r\F O(ni)
1

I SL(n.,R)
. 1

1
, = #1
{diag(Xl,...,Xr+1), X, € GL(ni,R), det X, }
{x= )%, =0 if 1i>], X, = Ini}
=0 if i>j, det X =1}

X e (Xij) ’Xij

consists of the matrices in SL(n,R) which are upper

form determined by Qpl,nz,...,nr+1).

N_ of the parabolic group PE can be charac-

E

terized intrinsically: it is the unipotent radical of Ppo»

i.e. the largest comnected normal subgroup of PE
ments are unipotent, and its Lie algebra n
ideal of L whose elements are nilpotent.

is a Levi subgroup of PE 4

whose ele-

E is the largest
The subgroup LE

that is to say a reductive closed

(semidirect product).

subgroup L of PE such that PE = L.NE . .
Hence if P 1is any parabolic subgroup of G , NP its uni-
potent radical, we have
P = L.NP (semidirect product) L
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- AT R

P

where L is a Levi subgroup of P (Zevi decomposition of P).

The Levi compoment L 1is not unique, but if L' is another

then we have L' = xLx-1 for some x ¢ NP .

The subgroup AE above can be characterized as the largest

connected split abelian subgroup of the centre of the Levi sub- :

group LE (an abelian subgroup A of G 1is split if for each

X € A, AdG(x) is diagonalizable over R ). The group Mﬁ
can be described as the intersection of the kernels of all con-
tinuous homomorphisms ¥ : LE > R . Hence, if P 1is any para-
bolic subgroup of G and L a Levi subgroup of P we have

L=MA, MnA = {1} , and hence by (1)
P = MAN (2)

where M =n Ker(x:L - R) and A is the largest comnected
split abelian subgroup of the centre of L ; moreover the
product mapping of M><A><NP onto P 1is a diffeomorphism.
This is the Langlands decomposition of P . The group A 1is
called a split component of P ; it is unique up to conjugation

by elements of N The dimension of A 1is called the para-

P
bolic rank of P . (Thus the parabolic rank of P

card(A-E) .)

g 18

Two parabolic subgroups P,P' are said to be associated if
P and xP'x-1 have a common Levi subgroup, for some x ¢ G .
Clearly conjugate parabolics are associated, but the converse
is false. For example, in G = SL(n,R) , the parabolic sub-
groups PE’PE'
(ni) and (ni) determined respectively by E and E' are

are associated if and only if the sequences

permutations of each other. Hence the number of classes of
associated parabolic subgroups in SL(n,R) 1is equal to the
number of partitions of n (whereas the number of conjugacy

classes of parabolic subgroups is 2n-1 ).
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6. Cartan subgroups

As before, let G be a connected semisimple Lie group with
finite centre, g the Lie algebra of G . A Cartan subgroup
of G 1is the centralizer B in G of a Cartan subalgebra b
of g : B = ZG(b) . It is a closed subgroup of G , but is
not necessarily connected. 1Its identity component B® is the
closed subgroup expG(b) with Lie algebra b , and the group

of components B/B° is finite.

Example. Let G = SL(2,R) and let a, b be the Cartan sub-

1 0 and  ( 0 1)

algebras of g =s[(2,R) generated by G -7 -1 0

. respectively (II, §11). The corresponding Cartan subgroups

of G are A , consisting of all diagonal matrices (8 a91)
(so that A = R* and therefore has two components) and
B = S0(2) (which is connected).

Another warning: Cartan subgroups need not be abelian.

(If a 1is the Cartan subalgebra of g = sI(3,R) consisting
of the diagonal matrices, and G 1is the simply-connected
double covering group of SL(3,R) , then the centralizer A
of a in G 1is not abelian.) However, if G admits a
faithful finite—-dimensional representation, then all Cartan
subgroups of G are abelian; so that in any case the Cartan
subgroups of G are abelian modulo the centre of G . )

Moreover, if b 1is a maximally compact (or fundamental)
Cartan subalgebra of g , then B = ZG(b) is both connected
and abelian.

Let g = T +p be a Cartan decompositon of g , let 6 be
the associated Cartan involution and let b = be+ by be a
f-stable Cartan subalgebra of g . Let B be the centralizer
of p in G , let Bp = exp(bp) , and BK =B n K, where K
(§2) is the compact subgroup of G with f as Lie algebra.
Bp is a vector group (the vector part of B ) and BK is a

(not necessarily connected) compact group (the compact part




of B ), and we have B = BK.Bp . The identity component B;
of BK is the subgroup of G corresponding to b £ e
Examples

1. 1f G=SL(n,R) , g =s1(n,R) , there are up to conjugacy
(0<js[4nd),

where the elements of bj are diagonal sums of j 2x2 ma-—

in g jn] + 1 distinct Cartan subalgebras bj

a. .
trices (-b% a%)

i 3
§11, Examples). The centralizer Bj of bj in G consists

and a diagonal matrix of size n-2j (II,

of the matrices of the same description and determinant equal
. . a b ..
to 1 . Since the group of nonzero matrices (_b a) is iso-

*
morphic to the multiplicative group C , it follows that Bj

*x_ 3 * n—2 i~
is isomorphic to (C )Ix (R )™ 2j-1

has ZH_ZJ—I

(unless n = 2j ), hence
connected components. If n = 2j, B, is iso-
morphic to (C*)j-lx T= Tk x RE71 , where T is theJcircle
group.

2. 1If G =SL(n,H) , ¢ =sl(n,H) , there is up to ‘conjugacy
in g only onme Cartan subalgebra q , consisting of the com-—
plex diagonal matrices X € g such that Re(trace X) =0

(II, §10, Examples). The corresponding Cartan subgroup A of
G consists of the complex diagonal matrices X such that
|[det X| = 1 , hence is isomorphic to (C*)n—1><T = ><Rn-1 .
3. If G = SU(p,q) , the group of linear transformations of
C" with determinant 1 which leave invariant the Hermitian
form

z,z, + ... v+ 2z 2z

151 p’p ~ Zp+lPpel T vt P

then ¢ =su(p,q) has g+l conjugacy classes of Cartan sub-
algebras (II, §11, Examples), represented by b(J) (0sjsq)
(loc.cit.). The centralizer B(J) of b(J) in G consists

of the matrices
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e ch Y 0 e1X sh Y
0 e 0

elx sh Y 0 elx ch Y

where X,Y,Z are real diagonal matrices of sizes gq-j, q-j

and p-q+2j respectively, and 2 trace X + trace Z =0 ;
33

7. The regular set

Let G be a connected semisimple Lie group with finite

centre, g 1its Lie algebra. As in Chapter I, §4, let

g' (resp. G") denote the set of regular elements of
g (resp. G) . For amy Cartan subalgebra b of g , let
b' = g'n b, and define

p' = U x(b') = u Ad(x)(v") .
x € Int(g) XeG

is connected and abelian, isomorphic to TIH.J—]'XRCI_J .

Likewise, if B 1is a Cartan subgroup of G , let B' = G'nB,

and define

Ggr= y xB'x L .

xe G

Now let b i (1£i<xr) be a set of representatives of the

conjugacy classes of Cartan subalgebras of g » and let Bi

be the centralizer of bi in G , so that every Cartan sub

group of G 1is conjugate to exadtly one of the Bi ~ Then

we have
rg
g'= u b
i=1
and
r
G' = u GBi .
i=1
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Since each bi (resp. Bi) has only a finite number of. connec-
ted components, it follows that the number of components of
g' (resp. G') 1is finite.

Let again b be a Cartan subalgebra of g , and let B;B*
be respectively the centralizer and normalizer of b in G .
The group B*/B = W(G,B) 1is finite. It acts on G/B by
right multiplication: if w = nB ¢ W(G,B) and % = xB ¢ G/B,
then %w = xBnB = xnB . Also W(G,B) acts on b' by the
rule w.H = AdG(n).H . Hence W(G,B) acts on (G/B) x b’

w(i,H) = (ﬁw—l,wﬁ) . Let

¢ : (G/B) xb' ~» gb'

be the mapping (x%x,H) - AdG(x)H . Then ¢ 1is an everywhere
regular covering map of degree |W(G,B)]

For the global analogue of this result we must replace the
Cartan subgroup B by its centri Bo , since B might not
be abelian. Define W(G,Bo) =B /Bo , which is still a finite
group. This group acts (on the right) on G/BO and by conju-

gation on B' . Let
v (e/B ) xn' > S

be the mapping (%,b) - xbx—1 . Then ¢ is an everywhere
regular covering map of degree IW(G,BO)[ .

These results enable integration over g (resp. G) to be
reduced to integration over (G/Bi) Xbi (resp. (G/Bio) xBi) ,
i=1,...,r , on the lines of Weyl's integration formula for

compact Lie groups.

8. Complex Lie groups
In this section we shall briefly review the structure
theory of complex semisimple Lie groups, which 1is a much

simpler business than the real theory: in particular, the
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phenomena of disconnectedness (of Cartan subgroups and para-
ﬁolic subgroups) do not arise in the complex case.

A complex Lie group is a complex—analytic manifold G
which is a group, the group operations being holomorphic
mappings. Semisimplicity, Cartan subgroups, parabolic sub-
groups etc. are defined exactly as in the real case.

Let G be a complex semisimple Lie group, ¢ its Lie
aigebra, b a Cartan subalgebra of g , H the centralizer
of h in G (the Cartan subgroup of G corresponding to
hb). Then H = expG(b) and is a :lzsed complex—analytic
subgroup of G , isomorphic to (C )~ where 2 = dimcb is

.the (complex) ramk of g (or of G ). All Cartan subgroups

of G are conjugate to H (because all Cartan subalgebras
of g are conjugate to § ).

As in Chapter II, §3 let R < b; be the root system of
(a,h) . We define three lattices LO , L. and LG in bR s

1

as follows. L1 is the lattice of all X ¢ bR such that

a(X) € Z for all roots o € R, i.e. L1 is the dual of the

*
lattice in p R spanned by the roots. Lo is the lattice in

bR spanned by the vectors Huv corresponding to the coroots
av = 20/<a,a> , @ € R . Since B(HaV) = <uv,B> e Z for any
two roots oa,B € R, it follows that L0 is a sublattice of

L1 . Moreover the quotient Ll/L0 is a finité’group. Both

L, and L. depend only on the root system R . Finally,

0 1

the lattice LG is the kernel of the homomorphism e: ) » H
defined by e(X) = expG(ZniX) ; is surjective and there-

H . The lattice LG lies

e

fore induces an isomorphism §/L

between L0 and L1 ; also

(1) The homomorphism e:} - H defines an isomorphism of

LI/LG onto the centre of G .

(2) The canonical mapping rl(H) - rl(G) is surjective
and defines an isomorphism of LG/LO onto rl(G)
It foll t =
ollows that LG LO
connected, and that LG = L1

if and only if G 1is simply

if and only if G 1is adjoint
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(i.e. G = Ad(G) ). TFor each lattice L 1lying between L

0
and L1 there exists a connected complex semisimple Lie group
G with Lie algebra g such that L, =L , and G 1is unique

G
(up to isomorphism).

Example. Let G = SL(n,C) , and take H to be the diagonal
subgroup of G . Then bR consists of the real diagonal

matrices with trace 0 ; L consists of the diagonal matrices

0
70 1)

with trace O and integer elements (so that LO = and

L1 consists of the diagonal matrices diag(al,...,aﬁ) with

Xai =0 and ai--aj € Z for all 1i,j It follows that

Ll/LO is cyclic of order n ; we have L, = LO , in agreement

G
with the fact that SL(n,C) 1is simply-connected. Hence the
almost simple connected complex Lie groups with Lie algebra
$1(n,C) are in one-one correspondence with the subgroups of

a cyclic group of order n , i.e. with the divisors of =n .
Let

g =ph+ ) g°
aeR
be the root-space decomposition of g with respect to D
(11, §3). Let R' be the set of positive roots of R rela-

tive to a chosen basis, and let

’ b agR+ ’ )
Then b 1is a subalgebra of g , called a Borel subalgebra.
It is a maximal solvable subalgebra of g , and every solvable
subalgebra of g 1is conjugate to a subalgebra of p .
. Let B be the immersed subgroup of G corresponding to
b . Then B 1is a closed complex—analytic subgroup of G,
It is a maximal connected

called a Borel subgroup of G .

closed solvable subgroup of G , and every comnected solvable

1/7.£

subgroup of G 1is conjugate to a subgroup of B .

In the terminology of §4, the Borel subgroups are the mini-

* pal parabolic subgroups of G . The parabolic subgroups of G

are therefore the subgroups of G which contain a Borel sub-
group; they are closed, connected complex-analytic subgroups
of G . Moreover, a closed complex-analytic subgroup Q of
G 1is a parabolic subgroup if and only if the homogeneous
épace G/Q 1is compact.

Let K be a maximal compact subgroup of G, B a Borel
subgroup. Then T =B n K 1is a maximal torus (i.e. Cartam
subgroup) of the compact (real) Lie group K . Since G = KB

(Iwasawa decomposition) we have
G/B = KB/B = K/BnK = K/T .

More generally, if P 1is a parabolic subgroup of G , then
KP = PnK 1is a subgroup of K containing a maximal torus,

and G/P = K/KP .

9. Lie groups and algebraic groups

Let g be a real semisimple Lie algebra. The adjoint
representation adg maps g isomorphically.onto a subalgebra
of gl (g) = gl(n,R) where n = dim g . Thus “g can be re-
alized as a Lie algebra of matrices.

On the other hand, if G 1is a real semisimple Lie group,
it is not necessarily the case that G can be realized as a
group of matrices - or, equivalenfly, that G has a faithful
finite-dimensional representation - even if the centre of G
is finite.

A semisimple Lie group G 1is said to be linear if G has
a faithful finite-dimensional representation, i.e. if there
exists a smooth injective homomorphism 1 :G > GL(n,C) for
some n . It follows then that i(G) is a closed subgroup

of GL(n,C) An equivalent condition is that G 1is algebraic,
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i.e. isomorphic to the identity component (with respect to the
usual topology) of the group of real points of a semisimple
algebraic group defined over R .

Let G and EC be the simply-connected Lie groups with
Lie algebras g 8 respectively, and let ¢ :G - GC be the
homomorphism corresponding to the injection X + X @ 1 of g
into 8, - This homomorphism ¢ 1is not necessarily injective;
it maps the centre of G into the centre of GC , and its
kernel Do is a subgroup of the (discrete) centre of G . The
group Go = G/D0 is the 'largest algebraic quotient’ of G .

If G is any connected Lie group with g as Lie algebra,
let N(G) denote the intersection of the kernels of the
finite-dimensional representations of G . Then (1) there
exists a representation of G whose kernel is exactly N{(G) ,
and (2) N(G) 1is the image of Do = ker(¢) under the cover—

ing map G ~G .

Example. If G = SL(n,R) , then EC = SL(n,C) and ¢ : E—»EC
is the composition of the covering map p: G+ G with the
embedding SL(n,R) - SL(n,C) Consequently no proper cover-

ing group of SL(n,R) 1is algebraic.

Finally, if G 1is compact and semisimple (which means that
the centre of G is finite) then G is compact, ¢ 1is in-
jective, and ¢ maps the centre of G isomorphically onto
the centre of EC . Hence every compact semisimple group is

algebraic, and
G/D <> Go/(D)
(where D is a subgroup of the (finite) centre of ¢ ) sets

up a one-one correspondence (up to isomorphism) between com

pact semisimple groups and complex semisimple groups.
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