MATH 455 TUTTE POLYNOMIAL PROBLEMS

(1) Compute the Tutte polynomials of the following graphs:
(a) The n-cycle C_{n}.
(b) $K_{4}-e$, where e is an edge
(c) The graph in Figure 1
(d) $K_{3,3}$
(2) Let G be a graph, and let G^{\prime} be the graph obtained by subdividing one edge of G into a path of length 2 .
(a) Find a relationship between the Tutte polynomials of G and G^{\prime}.
(b) Use your relationship to compute the Tutte polynomial of C_{6} by starting with C_{3}, which has Tutte polynomial $x^{2}+x+y$.
(3) Let $T_{G}(x, y)$ be the Tutte polynomials of a connected graph G. Then one can show that $T_{G}(1,1)$ is the number of spanning trees of G, and $T_{G}(1,2)$ is the number of connected spanning subgraphs (a subgraph $H \subset G$ is spanning if H contains all the vertices of $G ; H$ doesn't have to be a tree). Check these results for the complete graph K_{4}.
(4) Tutte's original definition of his polynomial was as follows. Let G be a graph with vertices V and edge set E. For any subset $A \subset E$, let $k(A)$ be the number of connected components of the graph with vertices V and edges A. For any set S, let $|S|$ be the size of S. Then Tutte defined

$$
T_{G}(x, y)=\sum_{A \subseteq E}(x-1)^{k(A)-k(E)}(y-1)^{k(A)+|A|-|V|}
$$

The sum is taken over all subsets of E, including E itself and the empty set.
(a) Apply Tutte's original definition to the cycle C_{3}, and show that you get the correct answer $x^{2}+x+y$.
(b) (Extra credit; not part of the official assignment) Show that Tutte's definition agrees with the definition given in class.

Figure 1.

