MATH 455 TUTTE POLYNOMIAL PROBLEMS

- (1) Compute the Tutte polynomials of the following graphs:
 - (a) The *n*-cycle C_n .
 - (b) $K_4 e$, where e is an edge
 - (c) The graph in Figure 1
 - (d) $K_{3,3}$
- (2) Let G be a graph, and let G' be the graph obtained by subdividing one edge of G into a path of length 2.
 - (a) Find a relationship between the Tutte polynomials of G and G'.
 - (b) Use your relationship to compute the Tutte polynomial of C_6 by starting with C_3 , which has Tutte polynomial $x^2 + x + y$.
- (3) Let $T_G(x, y)$ be the Tutte polynomials of a connected graph G. Then one can show that $T_G(1, 1)$ is the number of spanning trees of G, and $T_G(1, 2)$ is the number of connected spanning subgraphs (a subgraph $H \subset G$ is spanning if H contains all the vertices of G; H doesn't have to be a tree). Check these results for the complete graph K_4 .
- (4) Tutte's original definition of his polynomial was as follows. Let G be a graph with vertices V and edge set E. For any subset $A \subset E$, let k(A) be the number of connected components of the graph with vertices V and edges A. For any set S, let |S| be the size of S. Then Tutte defined

$$T_G(x,y) = \sum_{A \subseteq E} (x-1)^{k(A)-k(E)} (y-1)^{k(A)+|A|-|V|}$$

The sum is taken over all subsets of E, including E itself and the empty set.

- (a) Apply Tutte's original definition to the cycle C_3 , and show that you get the correct answer $x^2 + x + y$.
- (b) (Extra credit; not part of the official assignment) Show that Tutte's definition agrees with the definition given in class.

FIGURE 1.