MATH 455 PROBLEM SET HINTS

PROBLEM SET 5

These are (usually) not complete solutions for the problems, but are intended to give you the basic ideas needed for a solution. If the basics of a problem are covered in class, either through working it out or doing a similar example, then we omit it here. Complete solutions typically involve more writing than is given here.

§1.6.1.

(1) (a) 1 for $K_{1}, 2$ otherwise.
(b) 2 .
(c) t (you need one color for each r_{i}).
(d) 3 .
(e) 3 .
(f) tetra: 4. cube: 2. octa: 3. dodeca: 3. icosa: 4. These are found by giving explicit colorings.
(3) The chromatic number of the associated graph is 3 . The groups are Moe, Mike, Jeff; Larry, John; and Curly has to be by himself.
(4) Suppose the chromatic number is k and the two verts are v and w. If there is a k-coloring where v and w get different colors, then the chromatic number doesn't increase when the edge between v and w is added. Otherwise, if every k-coloring gives v and w the same colors, then we need a new color when we join v and w. So the number goes up by at most 1 .

§1.6.2.

(2) The largest degree of a vertex is 7 so $\omega(G) \leq 8$. It can't be 8 since it's not K_{8}. The other degrees aren't big enough to make it include K_{7}. It can't include K_{6} for the same reason. So the biggest we can hope for is $\omega=5$. And you can see K_{5} in there, thus $\omega=5$. To see that $\chi=6$, notice that we need three colors on the right column and at least three on the left column (because those are odd cycles). You can check that 6 colors are enough.
(4) Suppose P is a detour path. If $\chi>\tau$, then there must be a vertex v that needs a different color from all the vertices in P. But this means it must be connected to all the vertices in P. So we can lengthen P by adding a new edge on the end, which contradicts P being a detour path.

§1.6.3.

(1) We know it's at most 4. We just need to make sure that it's not less than 4. Take a look at Kentucky (for instance). It borders 7 states, and they form an odd cycle around it. So we need 4 colors (because odd cycles need at 3 colors, and we need another for Kentucky).
(2) This time the chromatic number is 4 again. Look at Paraguay. It borders Brazil, Bolivia, and Argentina, and they border each other in pairs. So you need 4 colors. (I hope people printed out a map and tried to color it ... you'd find this configuration that way.)
§1.6.4.
(1) (a) $t^{4}-3 t^{3}+3 t^{2}-t$
(b) $t^{6}-5 t^{5}+10 t^{4}-10 t^{3}+5 t^{2}-t$
(c) $t^{4}-4 t^{3}+6 t^{2}-3 t$
(d) $t^{5}-5 t^{4}+10 t^{3}-10 t^{2}+4 t$
(e) $t^{4}-5 t^{3}+8 t^{2}-4 t$
(f) $t^{5}-9 t^{4}+29 t^{3}-39 t^{2}+18 t$
(2) At $k=2$ we get -4 . The values of chromatic polynomials at positive integers are always ≥ 0.

