MATH 455 PROBLEM SET HINTS

PROBLEM SET I

These are (usually) not complete solutions for the problems, but are intended to give you the basic ideas needed for a solution. If the basics of a problem are covered in class, either through working it out or doing a similar example, then we omit it here. Complete solutions typically involve more writing than is given here.
§1.1.1.
(1) Draw K_{10} with the vertices in a circle and then erase the diagonals that go directly across.
(2) Make a vertex for each person, and draw $A \rightarrow B$ is B is on A 's list.
(3) Draw the graph with the indicated edges, and put a double edge if * appears.
§1.1.2.
(1) The complete graph K_{n} has $n(n-1) / 2$ edges (n choose 2).
(3) (a) Let N_{k} be the number of paths with k steps that start at c and walk away. Then we want $\sum_{k=0}^{4} N_{k}$. Think of counting sequences of distinct vertices. For instance, to get a walk of length 4 , we need to write something like $c x y z w$, where x, y, z, w are some ordering of $\{a, b, d, e\}$. There are $4 \cdot 3 \cdot 2 \cdot 1=24$ such choices, so $N_{4}=24$. Similarly we find $N_{0}=1, N_{1}=4, N_{2}=12$, and $N_{3}=24$. So the total is 65 .
(b) This is very similar.
(c) 10 .
(d) This is the same as the maximum length circuit in K_{4}. This is 4.
(9) The max will when the graph has two connected components, each of which are complete graphs. A little experimentation shows that we will want one component to be K_{1} and the other to be K_{n-1}.
(11) If e is part of a cycle, it cannot be a bridge (for after you delete e you can still make a walk from the endpoints of e to each other). Conversely, if e is not part of a cycle, it must be a bridge, since after deleting e there will be no path between its endpoints.

§1.1.3.

(2) The degrees of the vertices are either r_{1} or r_{2}. So if $r_{1} \neq r_{2}$, the graph can't possibly be regular.
(3) It is not, since $K_{4,4}$ contains no copy of K_{3} as a subgraph, and K_{3} is a subgraph of K_{4} (cf. Thm 1.3)
(4) It is not, since it would have to contain all vertices of K_{4}. But the induced graph of the full set of vertices is the original graph K_{4}, which is not P_{4}.
(7) For (a) and (b), just draw them out. For (c), the order of $L(G)$ is the same as the size of G. The size of $L(G)$ is more complicated. If a vertex v has degree r, then we get a copy of K_{r} as a subgraph of $L(G)$ (because each of the r edges emanating from v becomes a vertex in $L(G)$, and because any pair of these vertices in $L(G)$ must be joined by a edge in $L(G)$). By ranging v over all the vertices of G we get all the edges in $L(G)$. Since K_{r} has $r(r-1) / 2$ edges, the total number of edges in $L(G)$ is

$$
\sum_{i=1}^{n} \frac{r_{i}\left(r_{i}-1\right)}{2}
$$

You can verify this for the graphs in (a) and (b).
(10) P has no 4 -cycles. (To check this, pick a vertex and label the other vertices with their distances from the initial one. If there is a 4 -cycle C containing the first one, the labels on C will be 0121 . Then argue that you only have to check one other vertex, by symmetry.). It is clear that R does have some 4 -cycles, so we must have $P \nsucceq R$. Do the same thing you did to P to Q and you'll see that $P \simeq Q$.

