
MATH 611 EXAM

Let me know if you find any mistakes in the answers.

This exam is worth 100 points, with each problem worth 20 points. Please complete
Problem 1 and then any four of the remaining problems. Unless indicated, you must show
your work to receive credit for a solution. You may quote results and examples used in
class. Make sure you answer every part of every problem you do.

When submitting your exam, please indicate which problems you want graded by writing
them in the upper right corner on the cover of your exam booklet. You must select exactly
four problems; any unselected problems will not be graded, and if you select more than four
only the first four (in numerical order) will be graded.

(1) Please classify the following statements as True or False. Write out the word com-
pletely; do not simply write T or F. There is no partial credit for this problem, and
it is not necessary to show your work for this problem. G always denotes a group.
Answer: For a statement to be true, it must be true as stated with no additional
words or hypotheses. If you find yourself saying things like, “Yes, that’s true up to
isomorphism,” or “Yes that’s true if you assume X,” then it’s not true, it’s false!
(a) (4 pts) Let G be a group. Then the map ϕ : G → G given by ϕ(x) = x−1 is an

automorphism.Answer: False. This is true only if G is abelian.
(b) (4 pts) Any finite group has a unique composition series. Answer: False.

Composition series typically aren’t unique (consider Q8, and other examples
from HW). The successive quotients (composition factors) are unique up to a
permutation but this is not what was asked.

(c) (4 pts) Let N be a normal subgroup of a finite group G, and let C ⊂ G be a
conjugacy class. Then if C ∩N 6= ∅, we have C ⊂ N . Answer: True.

(d) (4 pts) The alternating groups An, n ≥ 3 are simple. Answer: False. A4 is
not simple.

(e) (4 pts) Suppose G,H are abelian groups. Then any semi-direct product G⋊H
is abelian. Answer: False. The dihedral groups D2p are semidirect products
of Z/2Z with Z/pZ for odd primes p. The nonabelian groups of order pq when
p|q − 1 are examples. There are many other examples.

(2) (20 pts) Let F be a field. Let G ⊂ GL3(F ) be the matrices of the form




1 a b
0 1 c
0 0 1



 , where a, b, c ∈ F .

(a) (10 pts) Show thatG is a group with respect to matrix multiplication. Answer:

One just needs to check that the this subset is closed under inverses and taking
products.
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(b) (10 pts) Suppose F = Z/2Z. Then G is a group of order 8, and from class we
know there are five such groups up to isomorphism. Which one is it? Answer:

We can first see that G is not abelian (this needs checking . . . of course for
general F it won’t be, but something exceptional could happen when F =
Z/2Z). This narrows it down to D8 or Q8. Then one can check that there are
two elements of order 4, which means it must be D8.

(3) (20 pts) Find all the normal subgroups of S4. Be sure to justify your answer.
Answer: Besides S4 and the trivial subgroup, the other normal subgroups are A4

and Z/2Z×Z/2Z. We know A4 is normal. Any normal subgroup must be union of
conjugacy classes, and Z/2Z×Z/2Z is the cc of type 22 together with the identity,
which has type 1111. All other unions of ccs can’t form a subgroup. This is verified
by checking their orders, or from seeing that once one cc is present others must
be present too (e.g. if you have a 4-cycle you also have a product of two disjoint
transpositions, etc.), and eventually you get S4 or A4.

(4) (20 pts) Let p be a prime.
(a) (6 pts) Define finite p-group. Answer: G is a finite p-group if the order of G

is a p-power.
(b) (14 pts) Prove that if G is a finite p-group, then the center Z(G) is nontrivial.

Answer: Consider the class equation |G| = |Z(G)|+
∑

[G : C(gi)], where the
sum is taken over a finite set of representatives for the noncentral conjugacy
classes. Take this equation mod p. The left vanishes, as does the sum (since
they are noncentral, each index must be > 1, and so must be a nontrivial
p-power). Thus |Z(G)| must vanish mod p, which means it can’t be 1.

(5) (20 pts)
(a) (8 pts) Prove that there are no simple groups of order 200. Answer: 200 =

23 ·52. We have n5 = 1 (mod 5) and n5|8, so n5 = 1 and the 5-Sylow is normal.
(b) (12 pts) Prove that there are no simple groups of order 56. Answer: 56 = 23 ·7.

Thus n7 = 1 or 8. If it’s 1, then of course the 7-Sylow, which is isomorphic to
Z/7Z, is normal. Otherwise there must be 48 elements of order 7, since any
nonidentity element of Z/7Z is a generator, and if there were any fewer some of
the different 7-Sylows would coincide. But then there are only 56− 48− 1 = 7
nonidentity elements left over, and together with the identity they must form
the 2-Sylow, which has order 8. Thus the 2-Sylow is forced to be unique. Hence
either n2 = 1 or n7 = 1, and the group can’t be simple. Note: it turns out that
that n7 = 1 for all groups of order 48 (there are 52 of them). On the other
hand n2 = 1 about half the time.

(6) (20 pts)
(a) (5 pts) How many surjective group homomorphisms are there from Z/2Z×Z/2Z

to Z/2Z? Answer: The kernel is a subgroup isomorphic to Z/2Z, and there
are 3 of those.

(b) (5 pts) How many surjective group homomorphisms are there from Z/2Z×Z/2Z
to Z/2Z × Z/2Z? Answer: There are 6, since |Aut(Z/2Z × Z/2Z)| = 6 (we
can freely permute the nonzero elements).

(c) (10 pts) How many (not necessarily injective) group homomorphisms are there
from Z/2Z× Z/2Z to the dihedral group D8 of order 8? Answer: The image



must be trivial, Z/2Z, or Z/2Z×Z/2Z. D8 has 5 elements of order 2 (refl. about
the four diagonals and r2) and 2 subgroups isomorphic to Z/2Z × Z/2Z (two
pairs of diagonals at right angles). If the image is Z/2Z then there are 15 (3
choices of kernel and 5 choices of image.) If the image is Z/2Z × Z/2Z there
are 12 (pick the image and then pick one of the 6 ways to go to it.) Thus the
total is 3 · 5 + 6 · 2 + 1 = 28, where the last 1 accounts for the trivial hom.

(7) (20 pts) Up to isomorphism, how many finite abelian groups are there of order
n ≤ 32? Justify your answer. Answer: For each n ≤ 32, we must compute
the prime factorization n = pe1

1
· · · pekk and then the number up to isomorphism

for n is Nn = P (e1) · · ·P (ek), where P (e) is the number of partitions of e. For
e = 1, 2, 3, 4, 5, the partition numbers are P (e) = 1, 1, 3, 5, 7. The set of pairs
(n,Nn) looks like (1, 1), (2, 1), (3, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 3), (9, 2), (10, 1),
(11, 1), (12, 2), (13, 1), (14, 1), (15, 1), (16, 5), (17, 1), (18, 2), (19, 1), (20, 2), (21, 1),
(22, 1), (23, 1), (24, 3), (25, 2), (26, 1), (27, 3), (28, 2), (29, 1), (30, 1), (31, 1), (32, 7)
(one way to work through this list is to first do the squarefree numbers, then a prime
squared times a squarefree number, etc.). The total number is 55.

(8) (20 pts) Let G = GL3(R), and let H ⊂ G be the subgroup of diagonal matrices.
(a) (10 pts) Compute the normalizer NG(H). Answer: It consists of all matri-

ces such that each row and column contains exactly one nonzero entry. This
problem is challenging but doable, given what we know from class. There are
several approaches.
First, it can be seen directly by computing the conjugate of a diagonal ma-
trix by a generic 3 × 3 matrix. (Note that it is not neccessary to divide by
the determinant . . . in other words you don’t have to use the inverse matrix in
the conjugation, it suffices to use the adjugate matrix.) All off-diagonal ele-
ments must vanish, independent of what the original diagonal matrix is. By
considering the possibilities one sees that this means that if an element in a
given position is nonzero, everything else in its row and column must be zero.
(What happens is each off-diagonal entry contains three products of triples of
elements from the generic matrix. Looking at what triples occurs leads to the
conclusion.)
A second method is to first look at GL2(R). It’s easy to see that the normalizer
there is the subgroup of off-diagonal matrices by direct computation. Then
this subgroup appears in the normalizer of H in two different ways (upper-left
corner, bottom-right corner). Taking products we get the matrices in NG(H)
as above. Then if there is any other nonzero element, one can see from specific
examples that it can’t be in the normalizer.
Finally, here is a geometric way to see the answer, at least with R as coefficients.
Let the diagonal matrix h have diagonal (s1, s2, s3) and let A be the generic
3 × 3 matrix. Then we are looking for conditions to guarantee that AhA−1 is
diagonal. The columns of A−1 form a dual orthonormal basis to the rows of A
under the dot product (since AA−1 = I). We can think of this as the columns
of A−1 determining three different planes that are perpendicular to the rows of
A (for row i, take the plane spanned by columns j, k, where {i, j, k} = {1, 2, 3}).
Now the condition that (Ah)A−1 is diagonal for all h can be interpreted as the



condition that the rows of Ah need to remain orthogonal to these planes for all
h. If (x, y, z) is a row of A, then the corresponding row of Ah is (s1x, s2y, s3z).
Since the si are nonzero and arbitrary, it is clear that the only way this can
work is if all but one of x, y, z is zero; otherwise the row can’t stay orthogonal.

(b) (10 pts) Compute the quotient group NG(H)/H. Answer: S3. The cosets are
represented by the permutation matrices.


