
ALGEBRAIC NUMBER THEORY PROBLEMS

Please complete 20 of these problems. You can hand them in at any time.
The problems cover a lot of different areas of the course; thus some are

more algebraic, some are more computational, etc. You can pick the prob-
lems that sound most appealing to you. In addition to these problems, any
exercise in Milne can be treated as an assigned problem if you wish. More
precisely, I’ve only highlighted a few that I find appealling, but you can solve
and submit any exercise in Milne as part of the 20.

Unless it says otherwise, the computational problems are intended to be
done by hand. Of course you can use pari-gp or something similar to check
your answer or for calculator help . . . I just mean that the problems shouldn’t
be done using sophisticated functions in pari-gp.

Problems last modified: Wed Sep 6 14:22:50 EDT 2017.

(1) Let F = Q(ζ13), where ζ13 is a primitive 1th root of unity.
(a) Find the lattice of all subfields of F (i.e. find all fields and their

inclusion relations).
(b) For each subfield E ⊂ F , find a generating element θ such that

E = F (θ) as a polynomial in ζ13.
(c) For each θ you found, find an irreducible polynomial over Q for

which it is a root.
(2) (a) Show that any quadratic number field has the form Q(

√
m),

where m is a squarefree integer.
(b) Show that Q(

√
m) is not isomorphic to Q(

√
n) if m and n are

distinct squarefree integers.
(3) Let O be the ring of integers in a number field F . Let N : F → Q

be the norm map. The ring O is called (norm) Euclidean if for each
a, b ∈ O, there exist q, r ∈ O such that a = qb+ r with either r = 0
or N(r) < N(b). It is a basic fact from commutative algebra that O
Euclidean implies O is a principal ideal domain and in fact a unique
factorization domain. Note that there is a more general notion of
Euclidean that allows “size” functions that aren’t the norm, but here
we take Euclidean to mean norm Euclidean.1

(a) Show that the Gaussian integers Z[
√
−1] is Euclidean.

(b) Show that the ring of integers in Q(
√
−7) is Euclidean.

(c) Show that the ring of integers in Q(
√
−5) is not Euclidean.

(d) Suppose d is squarefree and is 1 or 2 mod 4. Show that if d is
sufficiently large, then Z[

√
−d] is not Euclidean.

1In fact, an imaginary quadratic field is Euclidean in this more general sense iff it is
norm Euclidean. There are real quadratic fields that are Euclidean in the more general
sense but not norm Euclidean, for example Q(

√
69).

1



2 ALGEBRAIC NUMBER THEORY PROBLEMS

(4) Let α be algebraic over Q with monic minimal polynomial f ∈ Q[x] of
degree n. Let K = Q(α). Define the discriminant of the polynomial
f to be d(f) =

∏
1≤i<j≤n(αi − αj)2, where the αi are the distinct

roots in an algebraic closure.
(a) Show that NK/Q(f ′(α)) = (−1)n(n−1)/2d(f).

(b) Show that if f = x3 + ax+ b, then d(f) = −27b2 − 4a3.
(5) Let F be the cubic field Q(θ), where θ is a root of x3 − x− 4.

(a) Compute the signature of F .
(b) Show that the index of the ring of integers in the Z[θ] is at most

2. (You might find the formulas in Exercise (4) useful).
(c) Show that it is in fact 2 and find a basis of OF .

(6) Let p be an odd prime and let ζp = e2πi/p. Show that Q(ζp) contains
either Q(

√
p) or Q(

√
−p), and give conditions on p that determine

which possibility occurs. Express
√
−3 and

√
5 as polynomials in

the appropriate ζp.
(7) Suppose K and L are two fields with integral bases α1, . . . , αm and

β1, . . . , βn respectively. Suppose [KL : Q] = mn and that the dis-
criminants of K and L are relatively prime. Show that {αiβj | 1 ≤
i ≤ m, 1 ≤ j ≤ n} is an integral basis for the compositum KL.

(8) Suppose m and n are distinct relatively prime squarefree integers
and let K = Q(

√
m,
√
n). K is called a biquadratic field.

(a) Find all subfields of K.
(b) Assume m and n are congruent to 1 mod 4. Find the ring of

integers of K. (Hint: Exercise (7).)
(9) Let K be a number field. The inverse different is defined to be set

of all x ∈ K such that Trxy ∈ Z for all y ∈ OK .
(a) Compute the inverse different of K = Q(

√
−d) for d > 0 square-

free.
(b) Show that the inverse different is a fractional ideal of K.
(c) Show that the inverse of the inverse different is an ideal D. This

ideal is called . . . the different.
(d) Compute the different for the imaginary quadratic fields.

(10) Milne, exercise 1-1.
(11) Milne, exercise 2-1.
(12) Milne, exercise 2-4.
(13) Milne, exercise 2-6.
(14) Milne, exercise 3-1.
(15) Milne, exercise 3-3.
(16) Milne, exercise 3-4.
(17) Suppose f(x) = x3 + ax2 + bx+ c ∈ Q[x] is irreducible. Let α be a

root of f .
(a) Suppose a2 − 3b = d2 for some d ∈ Q. Prove

disc(1, α, α2) = −27f(
d− a

3
)f(
−d− a

3
).
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(b) Show that this formula is true even if d 6∈ Q.
(c) Find the ring of integers of the field Q(α) where f = x3−6x2 +

9x+ 3.
(18) Consider the three cubic polynomials x3 − 18x − 6, x3 − 36x − 78,

x3 − 54x− 150.
(a) Show that these polynomials are irreducible over Q.
(b) Show that the cubic fields F1, F2, F3 defined by these polynomi-

als have power bases for their rings of integers. Show that the
discriminants of these three fields coincide and are all equal to
22356.

(c) Show that the fields F1, F2, F3 are pairwise non-isomorphic.
(19) Milne, exercise 4-2.
(20) Milne, exercise 4-3.
(21) Milne, exercise 4-4.
(22) Milne, exercise 4-5.
(23) Milne, exercise 4-7.
(24) Milne, exercise 5-1.
(25) Milne, exercise 5-2.
(26) Milne, exercise 5-3.
(27) The totally positive region C of K ⊗ R ' Rr ⊗ Cs is the subset

(R>0)
r×Cs. A unit is called totally positive if it lies in C under the

embedding K → K ⊗ R. Let U ⊂ O× be the subgroup of totally
positive units.
(a) Find generators for U where K is (i) the real quadratic field

Q(
√

7), (ii) the real cubic field of discriminant 49, and (iii) the
complex cubic field of discriminant −23.

(b) The group U acts on C. Shintani proved that a there exists a
finite collection of open rational simplicial cones Σ = {σ} such
that Σ is a fundamental domain for U in C. (If you are not sure
what this means, just ask me.) Find such a collection for the
three fields in the first part.

(28) Prove that Q(ζ7) has class number 1, where ζ7 is a primitive 7th
root of 1. Do the same for the totally real subfield Q(ζ7)

+, which
has discriminant 49.

(29) Let O be the ring of integers of the biquadratic field Q(
√

2,
√
−3)

(cf. Exercise (7)).
(a) Show that O is a PID.
(b) Show that O contains the ring of integers of a quadratic field

that is not a PID.
(30) Prove that Z[α] is a PID, where α3 = 2.
(31) Show that Z[

√
−14] has class group isomorphic to Z/4Z.

(32) Let f(x) = x3 + 2x− 1 and K = Q[x]/(f). Let L = Q(
√
−59).

(a) Show that f is irreducible.
(b) Show that the discriminant of K is −59.
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(c) Find a polynomial giving the Galois closure E of K. (Hint: use
L).

(d) The class number of L is 3. Show that E is the Hilbert class
field of L.

(e) Use a computer to find all examples like this. (There are finitely
many imaginary quadratic fields with class number 3.)

(33) (a) Let K/Q be a number field and I ⊂ O an ideal. Show that
there is a finite extension L/K such that I becomes principal in
L. (Hint: some power of I, say Im, is principal with generator
α ∈ O. What happens if you adjoin m

√
α to K?)

(b) Show that there is a finite extension of K such that every ideal
of O becomes principal.

(c) Find an extension of degree 4 for K = Q(
√
−21) such that every

ideal becomes principal (note that the class number of K is 4).
(34) A pure cubic field is one of the form K = Q( 3

√
m) where m is a

cubefree integer.
(a) Find the rank of the unit group O×K for a pure cubic field K.

(b) Let L/K be the normal closure of K. Show that O×K is an

infinite index subgroup of O×L .
(c) Show that L contains a unit of norm 1 that is not a root of

unity. (Hint: look at things of the form u/ū, where the bar is
complex conjugation.)

(35) (a) Show that if α is a root of a monic integral polynomial f ∈ Z[x],
and if f(r) = ±1, then α− r is a unit in Q(α). (Hint: Consider
the polynomial f(x+ r).)

(b) Find the fundamental unit in K = Q(α) where α = 3
√

7. (Hint:
3
√

7 < 23/12.)
(36) Let F = Q(θ), where θ is a root of x4 − 3.

(a) Show that F is not a normal extension of Q.
(b) Show that the extension E/F given by taking the compositum

of F with K = Q(
√
−1) is normal over Q.

(c) Find the Galois group of E/Q.
(d) Find all subfields of E.

(37) Carry out Exercise (36) for F = Q(θ), where θ is a root of x5 − 3.
In other words, identify K, find E, and compute the Galois group
and all subfields.

(38) Suppose that p = 22
k

+ 1 is a prime number. For example, p =
3, 5, 17, 257, 65537. Such primes are called Fermat primes, and only
these five are known. Let us call an algebraic number α constructible
if it can be obtained from the rationals through a finite process of
the four basic arithmetic operations (+, −, ×, ÷) and taking square
roots. Gauss used this notion to construct the regular 17-gon using
compass and straightedge, hence the name constructible.
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(a) Show that the number cos(2π/p) is constructible if p is a Fermat
prime. (Hint: first construct exp(2πi/p). Use Galois theory.)

(b) Explicitly cos(2π/p) as a constructible number for p = 3, 5, 17.
(39) Let K = Q(

√
p,
√
q) be a biquadratic number field, where p 6= q are

prime.
(a) Express the Dedekind zeta function of K as a product of Dirich-

let L-functions.
(b) According to the Kronecker–Weber theorem, K is a subfield of

a cyclotomic field E = Q(exp(2πi/N)) for some N . Explicitly
find N realizing this result.


