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Sampling Hard-to-Reach Populations

• Motivation: UNAIDS
– Requires HIV prevalence estimates for all countries
– Most countries: concentrated in high-risk populations:

Injecting drug users, men who have sex with men, and sex workers
– Hard-to-reach networked populations.

• Other applications: Unregulated workers, jazz musicians

Traditional Survey Sampling:

• Probability sample (e.g. simple random sampling, stratified random sampling)
• Analyze data using sampling weights

Hidden populations: No practical conventional sampling frame.
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Link-Tracing Sampling

Suppose:

• Each population joined by informal social network of relationships.
• Researchers can access some members of the population.

Then:

• Begin with a reachable convenience sample (the seeds)
• Expand sample by following social network ties

This is Link-tracing Network Sampling
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Respondent-Driven Sampling - Link-tracing variant:

• Seed Dependence: Follow only a few links from each sampled
• Confidentiality: Respondents distribute uniquely identified coupons. No names.

(respondent-driven)
• Estimation based on Network positions: Several approaches

• Effective at obtaining large varied samples in many populations.
• Widely used: over 100 studies, in over 30 countries. Often HIV-risk populations.

Heckathorn, D.D., “Respondent-driven sampling: A new approach to the study of hidden populations.”
Social Problems, 1997.

Salganik, M.J. and D.D. Heckathorn, “Sampling and estimation in hidden populations using respondent-
driven sampling.” Sociological Methodology, 2004.
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Stylized population
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Start with seeds . . .
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Seeds recruit the first wave . . .
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First wave recruit the second wave . . .
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and so on . . .
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(and with un-sampled)
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degree of node i = # of ties of node i



6/22/12 RDS Inference [17]

homophily = Percent realized infected to infected ties
Percent realized uninfected to infected tie
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Link-Tracing Sampling:

• Challenges
– Sampling depends on (typically) partially-observed network data
– Convenience mechanism for initial sample leads to non-probability sample
– Unknown population size = unknown sampling frame

• Sampling designs have much in common, but no consensus on inferential
approach

Respondent-Driven Sampling subject to all of these
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Classic Design-Based Inference:
Generalized Horvitz-Thompson Estimator

• Goal: Estimate proportion “infected” :

µ =
1

N

NX
i=1

zi

where population labeled 1, 2, . . . N ,

zi =


1 i infected
0 i uninfected.

• Generalized Horvitz-Thompson Estimator:

µ̂ =
P
i Si

zi
πiP

i Si
1
πi

where

Si =


1 i sampled
0 i not sampled

πi = P (Si = 1).

Key Point: Requires πi ∀ i : Si = 1
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Simulation Study
Simulate Population

• 1000, 835, 715, 625, 555, or 525 nodes
• 20% “Infected”

Simulate Social Network (from ERGM, using statnet)

• Mean degree 7
• Homophily on Infection: R = P (infected to infected tie)

P (uninfected to infected tie) = 5 (or other)

• Differential Activity: w =
mean degree infected

mean degree uninfected = 1 (or other)

Simulate Respondent-Driven Sample

• 500 total samples
• 10 seeds, chosen proportional to degree
• 2 coupons each
• Coupons at random to relations
• Sample without replacement

Repeat 1000 times!

Blue parameters varied in study.
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One Approach: Random walk approximation

Consider:

• Connected undirected network
• Random walk on network

• A Markov chain on nodes

• Then stationary distribution proportional to nodal degree.
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One Approach: Random walk approximation

Respondent-driven Sampling:

• Approximate link-tracing process by this Markov chain
• Assume sample can be treated as from stationary distribution
• Then sampling probabilities proportional to degree.

Salganik, M.J., and D.D. Heckathorn, “Sampling and estimation in hidden populations using
respondent-driven sampling.” Sociological Methodology, 2004.

Volz, E., and D.D. Heckathorn, “Probability Estimation Theory for Respondent Driven Sampling,”
Journal of Official Statistics, 2008.

Volz-Heckathorn Estimator (VH): inverse probability weighted by degrees

µ̂ =
P
i Si

zi
diP

i Si
1
di

where di = degree of node i, Si sample indicator, zi quantity of interest.
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Volz-Heckathorn, w=1

E
st

im
at

ed
 P

ro
po

rti
on

 In
fe

ct
ed

0.
10

0.
15

0.
20

0.
25

0.
30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

50% 60% 70% 80% 90% 95%Sample %:



6/22/12 RDS Inference [26]

Varying Sample Percentage, w=1.4
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Finite Population Bias
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Finite Population Correction

Consider:

• A distribution uniform over all networks with given nodal degrees
• Marginalizing over this distribution of networks, transition probabilities of random

walk proportional to degree

Furthermore, consider:

• A without-replacement random walk, over the same distribution of networks
• Then transition probabilities equivalent to successive sampling

Successive Sampling (aka PPSWOR):

• Select the first unit (node) with probability proportional to size (degree).
• Select each additional unit with probability proportional to size

from the remaining unsampled units
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Successive Sampling Mapping
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New Estimator based on Successive Sampling

Estimate sampling probabilities based on successive sampling

These probabilities:

• Depend on population size
• Depend on sizes of all units
• Are not available in closed form

Approach:

• Assume population size known (sensitivity analysis)
• Novel iterative algorithm

Gile, K.J. “Improved Inference for Respondent-Driven Sampling Data with Application to HIV
Prevalence Estimation,” Journal of the American Statistical Association, 2011.
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Successive Sampling (SS) Estimator: Algorithm

• Goal: Estimate sampling probabilities (πk) by degree k.
• A function of population degree distribution N, πk(N).

1. Initial: πk(N0) ∝ k.
2. For i = 1 . . . r:

(a) Estimate degree distribution Ni by Generalized Horvitz-Thompson Estimator
(b) Compute πk(Ni) by simulation:

i. Simulate M SS samples from Ni

ii.

πk(Ni) =
E[Vk; Ni]

Nik
≈

Uk + 1

M · Nik + 1
,

where Vk is the number of sample units of degree k, and Uk is the number sampled in the
M simulations.

3. Use π̂ = π(Nr) to estimate µ:

µ̂SS =

∑
i Si

zi
π̂di∑

i Si
1
π̂di

.
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Standard Error Estimation:

Population Bootstrap:

• Simulate Population
– Estimate z by d distribution
– Estimate infection mixing matrix by z

• Simulate without-replacement sampling
– Choose recruit z according to mixing matrix
– Choose recruit d by successive sampling
– Update available population and mixing matrix

• Compute SS Estimates
• Results:

– Performs well across differential activity (w) and sample fraction
– Performs well with homophily
– Unreliable when seeds biased.
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Volz-Heckathorn, w=1
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Volz-Heckathorn, w=1.4
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SS, w=1.4
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All Infected Seeds, varying Homophily, 50%

E
xp

ec
te

d 
P

re
va

le
nc

e 
E

st
im

at
e 

(T
ru

th
 =

 0
.2

0)

0.
10

0.
15

0.
20

0.
25

0.
30

●

●

●

●
●

●

●

●

●

●●
●
●
●
●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

Mean
VH
SS

R 1 3 5



6/22/12 RDS Inference [38]

All Infected Seeds, varying number of seeds, 50%
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Seed Bias

• Depends on network structure (homophily)
• Depends on branching structure (waves)
• Also, need finite population correction.

Mathematically a random walk that is:

• Branching

• Without-Replacement

• on a Non-regular graph



6/22/12 RDS Inference [41]

Seed Bias

• Depends on network structure (homophily)
• Depends on branching structure (waves)
• Also, need finite population correction.

Mathematically a random walk that is:

• Branching
in an infinite space

• Without-Replacement
on a regular graph (lattice)

• on a Non-regular graph
with replacement, non-branching

Joint treatment analytically elusive.
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Network Model-Assisted Estimator

• Interested in sampling probabilities πi = E(Si).
• Should reflect:

– Nodal degree di
– Sample fraction
– Seed selection
– Homophily and Branching Structure
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Approach

Idealizations:

1. For known network y, seeds s, compute πi = E(Si|y, s).
2. For known network model, η, πi =

P
y∈Y P (y|η)E(Si|y, s)

We do not know y or η. So we estimate η.
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Exponential Random Graph Model

Exponential-family model for network Y , conditional on infection status z and nodal
degrees d.

P (Y = y) =
exp [η ·m(y, z, d)]

c(η)
y ∈ Y , the space Y consists of all binary undirected networks consistent
with d and z, and

c(η) =
X
u∈Y

exp [η ·m(u, z, d)]

A restriction of the common exponential-family random graph model (ERGM).

Here,
m(y, z, d) =

X
i,j

yijzi(1− zj)

Require:

• N (degree-infection distribution of population)
• Sufficient statistic: m(y, z, d) (number of cross-ties)
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Fitting the Model

Problem: Requires (unknown) population proportions and sufficient statistic.

Solution: Use design-based estimators

N̂kl =
1

N

NX
i=1

SiI(di = k, zi = l)

π̂i

m̂(η) =

NX
i=1

Si (xi(1− zi) + (di − xi)zi)
2π̂i

where xi =
P

j zjyij requires the observation of xi ∀ i : Si = 1.
For sampling Si, degree di, infection zi

Problem: This, in turn, requires sampling probabilities.

Solution: Novel iterative algorithm to find self-consistent solution.
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Model-Assisted Estimator: Algorithm

• Goal: Estimate sampling probabilities (πi) by degree di and infection zi.
• A function of homophily (η), and population of degrees and infection N.

• Estimate π̂i proportional to degree di.
• Iterate the following steps:

– Estimate N and m(η) using π̂i.
– Find corresponding model parameter η (statnet R package)
– Simulate M networks, and samples from networks. Estimate π̂i by simulation.

• Use the resulting estimated probabilities, π̂i, to form weighted estimator.

µ̂MA =

∑
i Si

zi
π̂i∑

i Si
1
π̂i

.
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Standard Error Estimation

Population Bootstrap:

• Simulate M populations
– Estimate z by d distribution
– Estimate η
– Simulate networks according to η

• Simulate RDS samples
– Fix seed distribution
– Sample without replacement

• Compute MA estimates. Average estimates over M populations
• Results:

– Performs well across differential activity (w), sample fraction, seed bias
– Computationally expensive
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Estimated Sampling Probabilities
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Simulation Study

Critical Questions:

• Does Model-Assisted estimator perform as well as SS estimator
for w 6= 1 and large sample fraction?

• Does Model-Assisted estimator correct for seed bias?
• How well does parametric bootstrap perform?
• What about unknown population size and network structure?

Comparison of Estimators:

• Mean: Naive Sample Mean
• SH: Salganik-Heckathorn: based on MME of number of cross-relations
• VH: Existing Volz-Heckathorn Estimator
• SS: New SS Estimator
• MA: New Network Model-Assisted Estimator
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50% Sample, w = 1, R = 1, Random Seeds
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70% Sample, w = 1.8, R = 1, Random Seeds
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50% Sample, w = 1, R = 5, Infected Seeds
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70% Sample, w = 1.8, R = 5, Infected Seeds
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All Infected Seeds, varying Homophily
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All Infected Seeds, varying Homophily
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All Infected Seeds, varying Homophily
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All Infected Seeds, varying number of seeds (waves)
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All Infected Seeds, varying number of seeds (waves)
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All Infected Seeds, varying number of seeds (waves)
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Parametric Bootstrap

% homoph. sample SE SE coverage coverage
sample R w bias observed bootstrap 95% 90%

50% 1 1 No 0.0140 0.0137 94.1% 88.8%
70% 1 1.8 No 0.0073 0.0075 94.9% 90.4%
50% 5 1 Initial 0.0188 0.0175 93.7% 87.9%
50% 5 1.8 Initial 0.0079 0.0080 95.0% 87.3%
50% 5 1 Referral 0.0216 0.0225 91.7% 84.7%
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Outline of Presentation

1. Link-Tracing Hidden Population Sampling
2. Respondent-Driven Sampling (RDS)
3. Inference for Respondent-Driven Sampling Data
4. Random Walk Approximation
5. Successive Sampling Approximation
6. Network Model-Assisted Estimator
7. Sensitivity Analysis
8. Application
9. Discussion
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Sensitivity Analysis

• Unknown Population Size
– Repeat simulations with inaccurate population estimate.

• Unknown Network Structure
– Repeat simulations with more complex network model.
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N = 1000, 50% Sample, w = 1, R = 1, Random Seeds
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N = 715, 70% Sample, w = 1.8, R = 1, Random Seeds
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N = 1000, 50% Sample, w = 1, R = 5, Infected Seeds
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N = 715, 70% Sample, w = 1.8, R = 5, Infected Seeds
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Increased Triangles (4 × edges with shared partner)
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Increased Geometric Function of Edge-Triangles (10 ×)
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Outline of Presentation

1. Link-Tracing Hidden Population Sampling
2. Respondent-Driven Sampling (RDS)
3. Inference for Respondent-Driven Sampling Data
4. Random Walk Approximation
5. Successive Sampling Approximation
6. Network Model-Assisted Estimator
7. Sensitivity Analysis
8. Application
9. Discussion
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HIV Prevalence among MSM in a Caribbean City
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HIV Prevalence among IDU in an Eastern European City
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HIV Prevalence among IDU in an Eastern European City
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Recruitment Rates

30 8 6 9 0.89 119 2019 49 0.99

1 2 3 2.33
7 1 1 4 1.15
8 1 1 4 1.07
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11 4 2 4 0.95
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HIV Prevalence among IDU in an Eastern European City
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HIV Prevalence among IDU in an Eastern European City
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Outline of Presentation

1. Link-Tracing Hidden Population Sampling
2. Respondent-Driven Sampling (RDS)
3. Inference for Respondent-Driven Sampling Data
4. Random Walk Approximation
5. Successive Sampling Approximation
6. Network Model-Assisted Estimator
7. Sensitivity Analysis
8. Application
9. Discussion
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Discussion: New Estimators
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Discussion: Respondent-Driven Sampling - Assumptions

Network Structure Sampling Assumptions
Assumptions

Random Walk Network size large (N >> n) Sampling with replacement
Model Single non-branching chain
Remove Seed Homophily weak enough Sufficiently many sample waves
Dependence Connected graph
To Estimate All ties reciprocated Degree accurately measured
Probabilities Random referral
Additional Known network size N No seed bias
Assumptions
of SS
Additional Non-random mixing observable Sampling model form
Assumptions Network model form
of MA

Assumptions of Volz-Heckathorn Estimator
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Discussion: Respondent-Driven Sampling - Assumptions

Network Structure Sampling Assumptions
Assumptions

Random Walk Network size large (N >> n) Sampling with replacement
Model Single non-branching chain
Remove Seed Homophily weak enough Sufficiently many sample waves
Dependence Connected graph
To Estimate All ties reciprocated Degree accurately measured
Probabilities Random referral
Additional Known network size N No seed bias
Assumptions
of SS
Additional Non-random mixing observable Sampling model form
Assumptions Network model form
of MA

Assumptions of Successive Sampling Estimator
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Discussion: Respondent-Driven Sampling - Assumptions

Network Structure Sampling Assumptions
Assumptions

Random Walk Network size large (N >> n) Sampling with replacement
Model Single non-branching chain
Remove Seed Homophily weak enough Sufficiently many sample waves
Dependence Connected graph
To Estimate All ties reciprocated Degree accurately measured
Probabilities Random referral
Additional Known network size N No seed bias
Assumptions
of SS
Additional Non-random mixing observable Sampling model form
Assumptions Network model form
of MA

Assumptions of Model-Assisted Estimator
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Discussion: Model-Assisted Estimator

• Sampling probabilities based on degrees, finite population effects, seeds,
homophily

• Natural framework for bootstrap standard error estimation
• Extensions:

– Measurable aspects of Network (neighborhoods, perhaps clustering)
– Measurable aspects of Sampling Process (differential recruitment, biased

referral)
– Inference for other features of simulated population

• Improved computational efficiency.
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Discussion: Hidden Population Sampling

Hidden Population Sampling

• Still many assumptions, high variance.
• Typically, RDS not advisable if alternatives available.
• RDS used in varied populations:

recent immigrants, unregulated workers, Nigerian rioters.

Network Sampling (link-tracing)

• Two main challenges: non-random seeds, unknown population size.

Social Network Analysis

• Here, network used for sampling, nuisance for estimation.
Often, it is of independent interest.

• First fitting of network model to data with initial convenience sample.
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